A geometric approach to apriori estimates for optimal transport maps

被引:0
|
作者
Brendle, Simon [1 ]
Leger, Flavien [2 ]
McCann, Robert J. [3 ]
Rankin, Cale [4 ,5 ]
机构
[1] Columbia Univ, 2290 Broadway, New York, NY 10027 USA
[2] INRIA Paris, Paris, France
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[4] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[5] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
来源
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
BOUNDARY-VALUE PROBLEM; POTENTIAL FUNCTIONS; REGULARITY; EQUATIONS; PRODUCTS; DESIGN;
D O I
10.1515/crelle-2024-0071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A key inequality which underpins the regularity theory of optimal transport for costs satisfying the Ma-Trudinger-Wang condition is the Pogorelov second-derivative bound. This translates to an apriori interior C 1 C<^>{1} estimate for smooth optimal maps. Here we give a new derivation of this estimate which relies in part on Kim, McCann and Warren's observation that the graph of an optimal map becomes a volume maximizing spacelike submanifold when the product of the source and target domains is endowed with a suitable pseudo-Riemannian geometry that combines both the marginal densities and the cost.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 50 条
  • [41] Optimal navigation and object finding without geometric maps or localization
    Tovar, B
    LaValle, SM
    Murrieta, R
    2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 464 - 470
  • [42] OPTIMAL RIGIDITY ESTIMATES FOR MAPS OF A COMPACT RIEMANNIAN MANIFOLD TO ITSELF
    Conti, Sergio
    Dolzmann, Georg
    Mueller, Stefan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (06) : 8070 - 8095
  • [43] Optimal rigidity estimates for maps of a compact Riemannian manifold to itself
    Conti, Sergio
    Dolzmann, Georg
    Müller, Stefan
    arXiv, 1600,
  • [44] A Geometric Approach to the Transport of Discontinuous Densities
    Moosmueller, Caroline
    Dietrich, Felix
    Kevrekidis, Ioannis G.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (03): : 1012 - 1035
  • [45] Apriori estimates for fractional diffusion equation
    Burazin, K.
    Mitrovic, D.
    OPTIMIZATION LETTERS, 2019, 13 (08) : 1793 - 1801
  • [46] Apriori estimates for fractional diffusion equation
    K. Burazin
    D. Mitrovic
    Optimization Letters, 2019, 13 : 1793 - 1801
  • [47] A Geometric Approach to the Calderón-Zygmund Estimates
    Li He Wang
    Acta Mathematica Sinica, 2003, 19 : 381 - 396
  • [48] A GEOMETRIC APPROACH TO THE WEIGHTED ESTIMATES OF HILBERT-TRANSFORMS
    TREIL, SR
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1983, 17 (04) : 319 - 321
  • [49] Improving estimates of genetic maps: A maximum likelihood approach
    Stewart, William C. L.
    Thompson, Elizabeth A.
    BIOMETRICS, 2006, 62 (03) : 728 - 734
  • [50] Tractable optimal experimental design using transport maps
    Koval, Karina
    Herzog, Roland
    Scheichl, Robert
    INVERSE PROBLEMS, 2024, 40 (12)