Multivariate strong invariance principles in Markov chain Monte Carlo

被引:0
|
作者
Banerjee, Arka [1 ]
Vats, Dootika [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, India
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 01期
关键词
Batch-means estimator; wide-sense regenera- tion; SPECTRAL VARIANCE ESTIMATORS; PARTIAL-SUMS; STRONG CONSISTENCY; OUTPUT ANALYSIS; APPROXIMATION; REGENERATION; SIMULATION; SEQUENCE;
D O I
10.1214/24-EJS2257
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Strong invariance principles in Markov chain Monte Carlo are crucial to theoretically grounded output analysis. Using the wide-sense regenerative nature of ergodic Markov chains, we obtain explicit bounds on the almost sure convergence rates for partial sums of multivariate ergodic Markov chains. Further, we present results on the existence of strong invariance principles for both polynomially and geometrically ergodic Markov chains without requiring a 1-step minorization condition. Our tight and explicit rates have a direct impact on output analysis, as it allows the verification of important conditions in the strong consistency of variance estimators.
引用
收藏
页码:2450 / 2476
页数:27
相关论文
共 50 条
  • [1] Strong consistency of multivariate spectral variance estimators in Markov chain Monte Carlo
    Vats, Dootika
    Flegal, James M.
    Jones, Galin L.
    BERNOULLI, 2018, 24 (03) : 1860 - 1909
  • [2] Multivariate output analysis for Markov chain Monte Carlo
    Vats, Dootika
    Flegal, James M.
    Jones, Galin L.
    BIOMETRIKA, 2019, 106 (02) : 321 - 337
  • [3] Multivariate initial sequence estimators in Markov chain Monte Carlo
    Dai, Ning
    Jones, Galin L.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 159 : 184 - 199
  • [4] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [5] Strong invariance principles for ergodic Markov processes
    Pengel, Ardjen
    Bierkens, Joris
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 191 - 246
  • [6] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [7] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [8] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    Machine Learning, 2003, 50 : 175 - 196
  • [9] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    BERNOULLI, 2011, 17 (03) : 987 - 1014
  • [10] Structured Markov Chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 191 - 191