Multivariate strong invariance principles in Markov chain Monte Carlo

被引:0
|
作者
Banerjee, Arka [1 ]
Vats, Dootika [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, India
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 01期
关键词
Batch-means estimator; wide-sense regenera- tion; SPECTRAL VARIANCE ESTIMATORS; PARTIAL-SUMS; STRONG CONSISTENCY; OUTPUT ANALYSIS; APPROXIMATION; REGENERATION; SIMULATION; SEQUENCE;
D O I
10.1214/24-EJS2257
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Strong invariance principles in Markov chain Monte Carlo are crucial to theoretically grounded output analysis. Using the wide-sense regenerative nature of ergodic Markov chains, we obtain explicit bounds on the almost sure convergence rates for partial sums of multivariate ergodic Markov chains. Further, we present results on the existence of strong invariance principles for both polynomially and geometrically ergodic Markov chains without requiring a 1-step minorization condition. Our tight and explicit rates have a direct impact on output analysis, as it allows the verification of important conditions in the strong consistency of variance estimators.
引用
收藏
页码:2450 / 2476
页数:27
相关论文
共 50 条
  • [31] MARKOV CHAIN SIMULATION FOR MULTILEVEL MONTE CARLO
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    FOUNDATIONS OF DATA SCIENCE, 2021, 3 (01): : 27 - 47
  • [32] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    Sadhana, 2006, 31 : 81 - 104
  • [33] Markov Chain Monte Carlo methods1. Simple Monte Carlo
    K B Athreya
    Mohan Delampady
    T Krishnan
    Resonance, 2003, 8 (4) : 17 - 26
  • [34] Markov Chain Monte Carlo in small worlds
    Guan, YT
    Fleissner, R
    Joyce, P
    Krone, SM
    STATISTICS AND COMPUTING, 2006, 16 (02) : 193 - 202
  • [35] MCMCpack: Markov Chain Monte Carlo in R
    Martin, Andrew D.
    Quinn, Kevin M.
    Park, Jong Hee
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 42 (09): : 1 - 21
  • [36] Parallel Markov chain Monte Carlo simulations
    Ren, Ruichao
    Orkoulas, G.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (21):
  • [37] A Markov chain Monte Carlo approach to stereovision
    Sénégas, J
    COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 97 - 111
  • [38] Optimal Markov chain Monte Carlo sampling
    Chen, Ting-Li
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05) : 341 - 348
  • [39] Stein Point Markov Chain Monte Carlo
    Chen, Wilson Ye
    Barp, Alessandro
    Briol, Francois-Xavier
    Gorham, Jackson
    Girolami, Mark
    Mackey, Lester
    Oates, Chris J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [40] The quantum complexity of Markov chain Monte Carlo
    Richter, Peter C.
    LOGIC AND THEORY OF ALGORITHMS, 2008, 5028 : 511 - 522