Multivariate strong invariance principles in Markov chain Monte Carlo

被引:0
|
作者
Banerjee, Arka [1 ]
Vats, Dootika [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, India
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 01期
关键词
Batch-means estimator; wide-sense regenera- tion; SPECTRAL VARIANCE ESTIMATORS; PARTIAL-SUMS; STRONG CONSISTENCY; OUTPUT ANALYSIS; APPROXIMATION; REGENERATION; SIMULATION; SEQUENCE;
D O I
10.1214/24-EJS2257
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Strong invariance principles in Markov chain Monte Carlo are crucial to theoretically grounded output analysis. Using the wide-sense regenerative nature of ergodic Markov chains, we obtain explicit bounds on the almost sure convergence rates for partial sums of multivariate ergodic Markov chains. Further, we present results on the existence of strong invariance principles for both polynomially and geometrically ergodic Markov chains without requiring a 1-step minorization condition. Our tight and explicit rates have a direct impact on output analysis, as it allows the verification of important conditions in the strong consistency of variance estimators.
引用
收藏
页码:2450 / 2476
页数:27
相关论文
共 50 条
  • [41] Stochastic Gradient Markov Chain Monte Carlo
    Nemeth, Christopher
    Fearnhead, Paul
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 433 - 450
  • [42] Markov Chain Monte Carlo and Databases (Abstract)
    Koch, Christoph
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2010, 2010, 6379 : 1 - 1
  • [43] Nonparametric Involutive Markov Chain Monte Carlo
    Mak, Carol
    Zaiser, Fabian
    Ong, Luke
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [44] A Quantum Parallel Markov Chain Monte Carlo
    Holbrook, Andrew J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1402 - 1415
  • [45] Hypothesis testing for Markov chain Monte Carlo
    Benjamin M. Gyori
    Daniel Paulin
    Statistics and Computing, 2016, 26 : 1281 - 1292
  • [46] Markov Chain Monte Carlo confidence intervals
    Atchade, Yves F.
    BERNOULLI, 2016, 22 (03) : 1808 - 1838
  • [47] Markov Chain Monte Carlo Random Testing
    Zhou, Bo
    Okamura, Hiroyuki
    Dohi, Tadashi
    ADVANCES IN COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2010, 6059 : 447 - 456
  • [48] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [49] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454
  • [50] Analyzing Markov chain Monte Carlo output
    Vats, Dootika
    Robertson, Nathan
    Flegal, James M.
    Jones, Galin L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (04):