Multivariate strong invariance principles in Markov chain Monte Carlo

被引:0
|
作者
Banerjee, Arka [1 ]
Vats, Dootika [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, India
来源
ELECTRONIC JOURNAL OF STATISTICS | 2024年 / 18卷 / 01期
关键词
Batch-means estimator; wide-sense regenera- tion; SPECTRAL VARIANCE ESTIMATORS; PARTIAL-SUMS; STRONG CONSISTENCY; OUTPUT ANALYSIS; APPROXIMATION; REGENERATION; SIMULATION; SEQUENCE;
D O I
10.1214/24-EJS2257
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Strong invariance principles in Markov chain Monte Carlo are crucial to theoretically grounded output analysis. Using the wide-sense regenerative nature of ergodic Markov chains, we obtain explicit bounds on the almost sure convergence rates for partial sums of multivariate ergodic Markov chains. Further, we present results on the existence of strong invariance principles for both polynomially and geometrically ergodic Markov chains without requiring a 1-step minorization condition. Our tight and explicit rates have a direct impact on output analysis, as it allows the verification of important conditions in the strong consistency of variance estimators.
引用
收藏
页码:2450 / 2476
页数:27
相关论文
共 50 条
  • [21] Monte Carlo error estimation for multivariate Markov chains
    Kosorok, MR
    STATISTICS & PROBABILITY LETTERS, 2000, 46 (01) : 85 - 93
  • [22] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [23] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    BERNOULLI, 2005, 11 (05) : 815 - 828
  • [24] Convergence Diagnostics for Markov Chain Monte Carlo
    Roy, Vivekananda
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 7, 2020, 2020, 7 : 387 - 412
  • [25] Geometry and Dynamics for Markov Chain Monte Carlo
    Barp, Alessandro
    Briol, Francois-Xavier
    Kennedy, Anthony D.
    Girolami, Mark
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 : 451 - 471
  • [26] Estimation via Markov chain Monte Carlo
    Spall, JC
    IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [27] Estimation via Markov chain Monte Carlo
    Spall, JC
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564
  • [28] Gambling with the truth: Markov chain Monte Carlo
    Kendall, WS
    CHALLENGES FOR THE 21ST CENTURY, 2000, : 83 - 101
  • [29] An introduction to Markov chain Monte Carlo methods
    Besag, J
    MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [30] THE BOOTSTRAP AND MARKOV-CHAIN MONTE CARLO
    Efron, Bradley
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1052 - 1062