Multivariate output analysis for Markov chain Monte Carlo

被引:150
|
作者
Vats, Dootika [1 ]
Flegal, James M. [2 ]
Jones, Galin L. [3 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Univ Calif Riverside, Dept Stat, 900 Univ Ave, Riverside, CA 92521 USA
[3] Univ Minnesota, Sch Stat, 224 Church St SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Covariance matrix estimation; Effective sample size; Markov chain Monte Carlo; Multivariate analysis; SPECTRAL VARIANCE ESTIMATORS; SURE INVARIANCE-PRINCIPLES; GEOMETRIC ERGODICITY; STRONG CONSISTENCY; GIBBS SAMPLERS; ASYMPTOTIC VARIANCE; TIME-SERIES; CONVERGENCE; APPROXIMATION; UNIVARIATE;
D O I
10.1093/biomet/asz002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Markov chain Monte Carlo produces a correlated sample which may be used for estimating expectations with respect to a target distribution. A fundamental question is: when should sampling stop so that we have good estimates of the desired quantities? The key to answering this question lies in assessing the Monte Carlo error through a multivariate Markov chain central limit theorem. The multivariate nature of this Monte Carlo error has been largely ignored in the literature. We present a multivariate framework for terminating a simulation in Markov chain Monte Carlo. We define a multivariate effective sample size, the estimation of which requires strongly consistent estimators of the covariance matrix in the Markov chain central limit theorem, a property we show for the multivariate batch means estimator. We then provide a lower bound on the number of minimum effective samples required for a desired level of precision. This lower bound does not depend on the underlying stochastic process and can be calculated a priori. This result is obtained by drawing a connection between terminating simulation via effective sample size and terminating simulation using a relative standard deviation fixed-volume sequential stopping rule, which we demonstrate is an asymptotically valid procedure. The finite-sample properties of the proposed method are demonstrated in a variety of examples.
引用
收藏
页码:321 / 337
页数:17
相关论文
共 50 条
  • [1] Analyzing Markov chain Monte Carlo output
    Vats, Dootika
    Robertson, Nathan
    Flegal, James M.
    Jones, Galin L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (04):
  • [2] Fixed-width output analysis for Markov chain Monte Carlo
    Jones, Galin L.
    Haran, Murali
    Caffo, Brian S.
    Neath, Ronald
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) : 1537 - 1547
  • [3] Multivariate initial sequence estimators in Markov chain Monte Carlo
    Dai, Ning
    Jones, Galin L.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 159 : 184 - 199
  • [4] Multivariate strong invariance principles in Markov chain Monte Carlo
    Banerjee, Arka
    Vats, Dootika
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 2450 - 2476
  • [5] Predictive Inference Based on Markov Chain Monte Carlo Output
    Krueger, Fabian
    Lerch, Sebastian
    Thorarinsdottir, Thordis
    Gneiting, Tilmann
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (02) : 274 - 301
  • [6] A Markov chain Monte Carlo analysis of the CMSSM
    de Austri, Roberto Ruiz
    Trotta, Roberto
    Roszkowski, Leszek
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (05):
  • [7] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [8] Strong consistency of multivariate spectral variance estimators in Markov chain Monte Carlo
    Vats, Dootika
    Flegal, James M.
    Jones, Galin L.
    BERNOULLI, 2018, 24 (03) : 1860 - 1909
  • [9] Improved estimation of normalizing constants from Markov chain Monte Carlo output
    de Valpine, Perry
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) : 333 - 351
  • [10] Soft output multiuser detection via a Markov chain Monte Carlo approach
    Henriksen, Soren
    Ninness, Brett
    Weller, Steven R.
    6TH AUSTRALIAN COMMUNICATIONS THEORY WORKSHOP 2005, PROCEEDINGS, 2005, : 229 - 235