Volterra and Composition Inner Derivations on the Fock-Sobolev Spaces

被引:0
|
作者
Yang, Xueyan [1 ]
He, Hua [2 ]
Tong, Cezhong [3 ]
Arroussi, Hicham [4 ,5 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Hebei Univ Technol, Dept Math, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Inst Math, Tianjin 300401, Peoples R China
[4] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[5] Univ Reading, Dept Math & Stat, Reading, England
关键词
Fock-Sobolev space; Inner derivation; Volterra operator; Composition operator; Compact intertwining relation; WEIGHTED COMPOSITION OPERATORS; COMPACT INTERTWINING RELATIONS; BERGMAN SPACES;
D O I
10.1007/s11785-024-01537-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the Fock-Sobolev spaces, we study the range of Volterra inner derivations and composition inner derivations. The Volterra inner derivation ranges in the ideal of compact operators if and only if the induced function g is a linear polynomial. The composition inner derivation ranges in the ideal of compact operators if and only if the induced function phi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is either identity or a contractive linear self-mapping of C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} . Moreover, we describe the compact intertwining relations for composition operators and Volterra operators between different Fock-Sobolev spaces. In this paper, our results are complement and in a sense extend some aspects of Calkin's result (Ann Math 42:839-873, 1941) to the algebras of bounded linear operators on Fock-Sobolev spaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    Wang XiaoFeng
    Cao GuangFu
    Xia Jin
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1443 - 1462
  • [32] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    WANG XiaoFeng
    CAO GuangFu
    XIA Jin
    ScienceChina(Mathematics), 2014, 57 (07) : 1443 - 1462
  • [33] Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces
    Cao, Guangfu
    He, Li
    Li, Ji
    Shen, Minxing
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3671 - 3693
  • [34] Mixed Product of Hankel and Toeplitz Operators on Fock-Sobolev Spaces
    Qin, Jie
    Wang, Xiao Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (11) : 1245 - 1255
  • [35] Hankel Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [36] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    XiaoFeng Wang
    GuangFu Cao
    Jin Xia
    Science China Mathematics, 2014, 57 : 1443 - 1462
  • [37] Boundedness of the Bergman Projection on Generalized Fock-Sobolev Spaces on Cn
    Cascante, Carme
    Fabrega, Joan
    Pascuas, Daniel
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (02)
  • [38] Factorization of the Fock-Sobolev space
    Cho, Hong Rae
    Lee, Han-Wool
    Park, Soohyun
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (08) : 1344 - 1351
  • [39] Fourier Multipliers and Pseudo-differential Operators on Fock-Sobolev Spaces
    Thangavelu, Sundaram
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2025, 97 (01)
  • [40] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Jianjun Chen
    Xiaofeng Wang
    Jin Xia
    Guangxia Xu
    Complex Analysis and Operator Theory, 2022, 16