Volterra and Composition Inner Derivations on the Fock-Sobolev Spaces
被引:0
|
作者:
Yang, Xueyan
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Yang, Xueyan
[1
]
He, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Univ Technol, Dept Math, Tianjin 300401, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
He, Hua
[2
]
Tong, Cezhong
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Univ Technol, Inst Math, Tianjin 300401, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Tong, Cezhong
[3
]
Arroussi, Hicham
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, Helsinki, Finland
Univ Reading, Dept Math & Stat, Reading, EnglandNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Arroussi, Hicham
[4
,5
]
机构:
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Hebei Univ Technol, Dept Math, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Inst Math, Tianjin 300401, Peoples R China
[4] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[5] Univ Reading, Dept Math & Stat, Reading, England
On the Fock-Sobolev spaces, we study the range of Volterra inner derivations and composition inner derivations. The Volterra inner derivation ranges in the ideal of compact operators if and only if the induced function g is a linear polynomial. The composition inner derivation ranges in the ideal of compact operators if and only if the induced function phi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is either identity or a contractive linear self-mapping of C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} . Moreover, we describe the compact intertwining relations for composition operators and Volterra operators between different Fock-Sobolev spaces. In this paper, our results are complement and in a sense extend some aspects of Calkin's result (Ann Math 42:839-873, 1941) to the algebras of bounded linear operators on Fock-Sobolev spaces.