Volterra and Composition Inner Derivations on the Fock-Sobolev Spaces

被引:0
|
作者
Yang, Xueyan [1 ]
He, Hua [2 ]
Tong, Cezhong [3 ]
Arroussi, Hicham [4 ,5 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Hebei Univ Technol, Dept Math, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Inst Math, Tianjin 300401, Peoples R China
[4] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[5] Univ Reading, Dept Math & Stat, Reading, England
关键词
Fock-Sobolev space; Inner derivation; Volterra operator; Composition operator; Compact intertwining relation; WEIGHTED COMPOSITION OPERATORS; COMPACT INTERTWINING RELATIONS; BERGMAN SPACES;
D O I
10.1007/s11785-024-01537-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the Fock-Sobolev spaces, we study the range of Volterra inner derivations and composition inner derivations. The Volterra inner derivation ranges in the ideal of compact operators if and only if the induced function g is a linear polynomial. The composition inner derivation ranges in the ideal of compact operators if and only if the induced function phi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is either identity or a contractive linear self-mapping of C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} . Moreover, we describe the compact intertwining relations for composition operators and Volterra operators between different Fock-Sobolev spaces. In this paper, our results are complement and in a sense extend some aspects of Calkin's result (Ann Math 42:839-873, 1941) to the algebras of bounded linear operators on Fock-Sobolev spaces.
引用
收藏
页数:16
相关论文
共 50 条