Volterra and Composition Inner Derivations on the Fock-Sobolev Spaces

被引:0
|
作者
Yang, Xueyan [1 ]
He, Hua [2 ]
Tong, Cezhong [3 ]
Arroussi, Hicham [4 ,5 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Hebei Univ Technol, Dept Math, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Inst Math, Tianjin 300401, Peoples R China
[4] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[5] Univ Reading, Dept Math & Stat, Reading, England
关键词
Fock-Sobolev space; Inner derivation; Volterra operator; Composition operator; Compact intertwining relation; WEIGHTED COMPOSITION OPERATORS; COMPACT INTERTWINING RELATIONS; BERGMAN SPACES;
D O I
10.1007/s11785-024-01537-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the Fock-Sobolev spaces, we study the range of Volterra inner derivations and composition inner derivations. The Volterra inner derivation ranges in the ideal of compact operators if and only if the induced function g is a linear polynomial. The composition inner derivation ranges in the ideal of compact operators if and only if the induced function phi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is either identity or a contractive linear self-mapping of C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} . Moreover, we describe the compact intertwining relations for composition operators and Volterra operators between different Fock-Sobolev spaces. In this paper, our results are complement and in a sense extend some aspects of Calkin's result (Ann Math 42:839-873, 1941) to the algebras of bounded linear operators on Fock-Sobolev spaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Positive Toeplitz Operators Between Different Fock-Sobolev Type Spaces
    Chen, Jianjun
    Wang, Xiaofeng
    Xia, Jin
    Xu, Guangxia
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (02)
  • [42] Sums of dual Toeplitz products on the orthogonal complements of Fock-Sobolev spaces
    Yong Chen
    Young Joo Lee
    Acta Mathematica Scientia, 2024, 44 : 810 - 822
  • [43] SUMS OF DUAL TOEPLITZ PRODUCTS ON THE ORTHOGONAL COMPLEMENTS OF FOCK-SOBOLEV SPACES
    陈泳
    Young Joo LEE
    ActaMathematicaScientia, 2024, 44 (03) : 810 - 822
  • [44] UNITARY, SELF-ADJOINT AND J-SYMMETRIC WEIGHTED COMPOSITION OPERATORS ON FOCK-SOBOLEV SPACES
    Chen, Ren-yu
    Yang, Zi-cong
    Zhou, Ze-hua
    OPERATORS AND MATRICES, 2022, 16 (04): : 1139 - 1154
  • [45] SUMS OF DUAL TOEPLITZ PRODUCTS ON THE ORTHOGONAL COMPLEMENTS OF FOCK-SOBOLEV SPACES
    Chen, Yong
    Lee, Young Joo
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) : 810 - 822
  • [46] Sarason's Conjecture of Toeplitz Operators on Fock-Sobolev Type Spaces
    Wang, Xiaofeng
    Chen, Jianjun
    Xia, Jin
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [47] Mixed product of Hankel and Toeplitz operators on Fock-Sobolev spaces of negative orders
    Xu, Chunxu
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (01) : 123 - 138
  • [48] Volterra-type inner derivations on Hardy spaces
    Arroussi, H.
    Tong, C.
    Virtanen, J. A.
    Yuan, Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (02)
  • [49] Commuting Toeplitz operators on the Fock-Sobolev space
    Fan, Junmei
    Liu, Liu
    Lu, Yufeng
    ADVANCES IN OPERATOR THEORY, 2022, 7 (03)
  • [50] On the Spectrum of Volterra-Type Integral Operators on Fock–Sobolev Spaces
    Tesfa Mengestie
    Complex Analysis and Operator Theory, 2017, 11 : 1451 - 1461