Volterra and Composition Inner Derivations on the Fock-Sobolev Spaces

被引:0
|
作者
Yang, Xueyan [1 ]
He, Hua [2 ]
Tong, Cezhong [3 ]
Arroussi, Hicham [4 ,5 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Hebei Univ Technol, Dept Math, Tianjin 300401, Peoples R China
[3] Hebei Univ Technol, Inst Math, Tianjin 300401, Peoples R China
[4] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[5] Univ Reading, Dept Math & Stat, Reading, England
关键词
Fock-Sobolev space; Inner derivation; Volterra operator; Composition operator; Compact intertwining relation; WEIGHTED COMPOSITION OPERATORS; COMPACT INTERTWINING RELATIONS; BERGMAN SPACES;
D O I
10.1007/s11785-024-01537-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the Fock-Sobolev spaces, we study the range of Volterra inner derivations and composition inner derivations. The Volterra inner derivation ranges in the ideal of compact operators if and only if the induced function g is a linear polynomial. The composition inner derivation ranges in the ideal of compact operators if and only if the induced function phi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is either identity or a contractive linear self-mapping of C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} . Moreover, we describe the compact intertwining relations for composition operators and Volterra operators between different Fock-Sobolev spaces. In this paper, our results are complement and in a sense extend some aspects of Calkin's result (Ann Math 42:839-873, 1941) to the algebras of bounded linear operators on Fock-Sobolev spaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES
    Ameur, Yacin
    Seo, Seong-Mi
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 397 - 420
  • [12] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    Potential Analysis, 2015, 43 : 199 - 240
  • [13] Gleason's problem on Fock-Sobolev spaces
    Dai, Jineng
    Zhou, Jingyun
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 337 - 348
  • [14] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    Acta Mathematica Scientia, 2021, 41 : 337 - 348
  • [15] Carleson Type Measures for Fock-Sobolev Spaces
    Mengestie, Tesfa
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1225 - 1256
  • [16] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [17] GLEASON'S PROBLEM ON FOCK-SOBOLEV SPACES
    戴济能
    周静云
    Acta Mathematica Scientia, 2021, 41 (01) : 337 - 348
  • [18] Sub-Hilbert spaces in Fock-Sobolev spaces on Cn
    Abkar, Ali
    ADVANCES IN OPERATOR THEORY, 2023, 8 (02)
  • [19] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [20] Banach space structure of weighted Fock-Sobolev spaces
    He, Li
    Cao, Guangfu
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 693 - 703