MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES

被引:2
|
作者
Ameur, Yacin [1 ]
Seo, Seong-Mi [2 ]
机构
[1] Lund Univ, Fac Sci, Dept Math, POB 118, S-22100 Lund, Sweden
[2] Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South Korea
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2019年 / 139卷 / 01期
关键词
KERNEL;
D O I
10.1007/s11854-019-0055-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two-dimensional eigenvalue ensembles close to certain types of singular points in the interior of the droplet. We prove existence of a microscopic density which quickly approaches the equilibrium density, as the distance from the singularity increases beyond the microscopic scale. This kind of asymptotic is used to analyze normal matrix models in [3]. In addition, we obtain here asymptotics for the Bergman function of certain Fock-Sobolev spaces of entire functions.
引用
收藏
页码:397 / 420
页数:24
相关论文
共 50 条
  • [1] Microscopic densities and Fock-Sobolev spaces
    Yacin Ameur
    Seong-Mi Seo
    Journal d'Analyse Mathématique, 2019, 139 : 397 - 420
  • [2] FRACTIONAL FOCK-SOBOLEV SPACES
    Cho, Hong Rae
    Park, Soohyun
    NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 79 - 97
  • [3] Fock-Sobolev spaces and their Carleson measures
    Cho, Hong Rae
    Zhu, Kehe
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2483 - 2506
  • [4] Fock-Sobolev Spaces of Fractional Order
    Cho, Hong Rae
    Choe, Boo Rim
    Koo, Hyungwoon
    POTENTIAL ANALYSIS, 2015, 43 (02) : 199 - 240
  • [5] Fock-Sobolev Spaces of Fractional Order
    Hong Rae Cho
    Boo Rim Choe
    Hyungwoon Koo
    Potential Analysis, 2015, 43 : 199 - 240
  • [6] Gleason's problem on Fock-Sobolev spaces
    Dai, Jineng
    Zhou, Jingyun
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (01) : 337 - 348
  • [7] Gleason’s problem on Fock-Sobolev spaces
    Jineng Dai
    Jingyun Zhou
    Acta Mathematica Scientia, 2021, 41 : 337 - 348
  • [8] Carleson Type Measures for Fock-Sobolev Spaces
    Mengestie, Tesfa
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1225 - 1256
  • [9] Toeplitz Operators on Fock-Sobolev Type Spaces
    Cho, Hong Rae
    Isralowitz, Joshua
    Joo, Jae-Cheon
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (01) : 1 - 32
  • [10] GLEASON'S PROBLEM ON FOCK-SOBOLEV SPACES
    戴济能
    周静云
    Acta Mathematica Scientia, 2021, 41 (01) : 337 - 348