MICROSCOPIC DENSITIES AND FOCK-SOBOLEV SPACES

被引:2
|
作者
Ameur, Yacin [1 ]
Seo, Seong-Mi [2 ]
机构
[1] Lund Univ, Fac Sci, Dept Math, POB 118, S-22100 Lund, Sweden
[2] Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South Korea
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2019年 / 139卷 / 01期
关键词
KERNEL;
D O I
10.1007/s11854-019-0055-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study two-dimensional eigenvalue ensembles close to certain types of singular points in the interior of the droplet. We prove existence of a microscopic density which quickly approaches the equilibrium density, as the distance from the singularity increases beyond the microscopic scale. This kind of asymptotic is used to analyze normal matrix models in [3]. In addition, we obtain here asymptotics for the Bergman function of certain Fock-Sobolev spaces of entire functions.
引用
收藏
页码:397 / 420
页数:24
相关论文
共 50 条
  • [21] Integral Operators on Fock-Sobolev Spaces via Multipliers on Gauss-Sobolev Spaces
    Wick, Brett D.
    Wu, Shengkun
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2022, 94 (02)
  • [22] Commuting Toeplitz Operators on Fock-Sobolev Spaces of Negative Orders
    Cho, Hong Rae
    Lee, Han-Wool
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (10) : 1989 - 2005
  • [23] HANKEL BILINEAR FORMS ON GENERALIZED FOCK-SOBOLEV SPACES ON Cn
    Cascante, Carme
    Fabrega, Joan
    Pascuas, Daniel
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 841 - 862
  • [24] Sub-Hilbert relation for Fock-Sobolev type spaces
    Eskandari, Setareh
    Abkar, Ali
    Ahag, Per
    Perala, Antti
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 958 - 969
  • [25] Semi-commuting Toeplitz operators on Fock-Sobolev spaces
    Qin, Jie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [26] Commuting Toeplitz Operators on Fock-Sobolev Spaces of Negative Orders
    Hong Rae CHO
    Han-Wool LEE
    Acta Mathematica Sinica,English Series, 2023, (10) : 1989 - 2005
  • [27] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    Wang XiaoFeng
    Cao GuangFu
    Xia Jin
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1443 - 1462
  • [28] Toeplitz operators on Fock-Sobolev spaces with positive measure symbols
    WANG XiaoFeng
    CAO GuangFu
    XIA Jin
    ScienceChina(Mathematics), 2014, 57 (07) : 1443 - 1462
  • [29] Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces
    Cao, Guangfu
    He, Li
    Li, Ji
    Shen, Minxing
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3671 - 3693
  • [30] Mixed Product of Hankel and Toeplitz Operators on Fock-Sobolev Spaces
    Qin, Jie
    Wang, Xiao Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (11) : 1245 - 1255