Fourier Multipliers and Pseudo-differential Operators on Fock-Sobolev Spaces

被引:0
|
作者
Thangavelu, Sundaram [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, India
关键词
Fock space; Bargmann transform; Fourier multipliers; Pseudo-differential operators;
D O I
10.1007/s00020-024-02789-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any bounded linear operator T on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L<^>2({\mathbb {R}}<^>n) $$\end{document} gives rise to the operator S=B degrees T degrees B & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S= B \circ T \circ B<^>*$$\end{document} on the Fock space F(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}({{\mathbb {C}}}<^>n) $$\end{document} where B is the Bargmann transform. In this article we identify those S which correspond to Fourier multipliers and pseudo-differential operators on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L<^>2({\mathbb {R}}<^>n)$$\end{document} and study their boundedness on the Fock-Sobolev spaces Fs,2(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}<^>{s,2}({{\mathbb {C}}}<^>n)$$\end{document}.
引用
收藏
页数:21
相关论文
共 50 条