Smith ideals of operadic algebras in monoidal model categories

被引:1
|
作者
White, David [1 ]
Yau, Donald [2 ]
机构
[1] Denison Univ, Dept Math & Comp Sci, Granville, OH 43023 USA
[2] Ohio State Univ Newark, Dept Math, Newark, OH USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 01期
关键词
BOUSFIELD LOCALIZATION; HOMOTOPY-THEORY;
D O I
10.2140/agt.2024.24.341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building upon Hovey's work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence between a model structure on Smith ideals and a model structure on algebra morphisms induced by the cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all dagger-cofibrant operads. For chain complexes over a field of characteristic zero and the stable module category, this Quillen equivalence holds for all operads. We end with a comparison between the semi -model category approach and the 1-category approach to encoding the homotopy theory of algebras over dagger-cofibrant operads that are not necessarily admissible.
引用
收藏
页码:341 / 392
页数:55
相关论文
共 50 条
  • [21] Categories over quantum affine algebras and monoidal categorification
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    Park, Euiyong
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2021, 97 (07) : 39 - 44
  • [22] Operadic categories and decalage
    Garner, Richard
    Kock, Joachim
    Weber, Mark
    ADVANCES IN MATHEMATICS, 2021, 377
  • [23] Monoidal Categories Enriched in Braided Monoidal Categories
    Morrison, Scott
    Penneys, David
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (11) : 3527 - 3579
  • [24] Monoidal categories and monoidal 2-categories
    不详
    NON-SEMISIMPLE TOPOLOGICAL QUANTUM FIELD THEORIES FOR 3-MANIFOLDS WITH CORNERS, 2002, 1765 : 217 - 259
  • [25] Splitting monoidal stable model categories
    Barnes, D.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 846 - 856
  • [26] Dyslexia and duals of Hopf algebras in braided monoidal categories.
    Alvarez, JNA
    Rodríguez, RG
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (04) : 1903 - 1909
  • [27] BRAIDED MONOIDAL CATEGORIES AND DOI-HOPF MODULES FOR MONOIDAL HOM-HOPF ALGEBRAS
    Guo, Shuangjian
    Zhang, Xiaohui
    Wang, Shengxiang
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 79 - 103
  • [28] Coquasitriangular Weak Hopf Group Algebras and Braided Monoidal Categories
    Shuangjian GUO
    JournalofMathematicalResearchwithApplications, 2014, 34 (06) : 655 - 668
  • [29] ACTIONS OF MONOIDAL CATEGORIES AND REPRESENTATIONS OF CARTAN TYPE LIE ALGEBRAS
    Pei, Yufeng
    Sheng, Yunhe
    Tang, Rong
    Zhao, Kaiming
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023, 22 (05) : 2367 - 2402
  • [30] Vector product and composition algebras in braided monoidal additive categories
    Street, Ross
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (04): : 581 - 604