Dyslexia and duals of Hopf algebras in braided monoidal categories.

被引:2
|
作者
Alvarez, JNA [1 ]
Rodríguez, RG
机构
[1] Univ Vigo, Dept Matemat, E-36280 Vigo, Spain
[2] Univ Vigo, Dept Matemat Aplicada, E-36280 Vigo, Spain
关键词
D O I
10.1080/00927879908826537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite Hopi algebra H in a braided monoidal category, in this paper we define two duals H-boolean AND, H-boolean AND and we prove that the Hopf algebras H-boolean AND, H-boolean AND are equal if and only if H is dyslectic and codyslectic. For example this situation appears when the antipode lambda verifies lambda circle lambda = id(H).
引用
收藏
页码:1903 / 1909
页数:7
相关论文
共 50 条
  • [1] Topological Hopf algebras and braided monoidal categories
    Larson, RG
    APPLIED CATEGORICAL STRUCTURES, 1998, 6 (02) : 139 - 150
  • [2] Topological Hopf Algebras and Braided Monoidal Categories
    R. G. Larson
    Applied Categorical Structures, 1998, 6 : 139 - 150
  • [3] Quasitriangular Hopf group algebras and braided monoidal categories
    Zhao, Shiyin
    Wang, Jing
    Chen, Hui-Xiang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 893 - 909
  • [4] Quasitriangular Hopf group algebras and braided monoidal categories
    Shiyin Zhao
    Jing Wang
    Hui-Xiang Chen
    Czechoslovak Mathematical Journal, 2014, 64 : 893 - 909
  • [5] BRAIDED MONOIDAL CATEGORIES AND DOI-HOPF MODULES FOR MONOIDAL HOM-HOPF ALGEBRAS
    Guo, Shuangjian
    Zhang, Xiaohui
    Wang, Shengxiang
    COLLOQUIUM MATHEMATICUM, 2016, 143 (01) : 79 - 103
  • [6] NEW BRAIDED MONOIDAL CATEGORIES OVER MONOIDAL HOM-HOPF ALGEBRAS
    Wang, Shengxiang
    Ding, Nanqing
    COLLOQUIUM MATHEMATICUM, 2017, 146 (01) : 77 - 97
  • [7] Coquasitriangular Weak Hopf Group Algebras and Braided Monoidal Categories
    Shuangjian GUO
    JournalofMathematicalResearchwithApplications, 2014, 34 (06) : 655 - 668
  • [8] A class of braided monoidal categories via quasitriangular Hopf π-crossed coproduct algebras
    Ma, Tianshui
    Liu, Linlin
    Li, Haiying
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (02)
  • [9] HOPF CYCLIC COHOMOLOGY IN BRAIDED MONOIDAL CATEGORIES
    Khalkhali, Masoud
    Pourkia, Arash
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2010, 12 (01) : 111 - 155
  • [10] Weak Hopf monoids in braided monoidal categories
    Pastro, Craig
    Street, Ross
    ALGEBRA & NUMBER THEORY, 2009, 3 (02) : 149 - 207