Smith ideals of operadic algebras in monoidal model categories

被引:1
|
作者
White, David [1 ]
Yau, Donald [2 ]
机构
[1] Denison Univ, Dept Math & Comp Sci, Granville, OH 43023 USA
[2] Ohio State Univ Newark, Dept Math, Newark, OH USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 01期
关键词
BOUSFIELD LOCALIZATION; HOMOTOPY-THEORY;
D O I
10.2140/agt.2024.24.341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building upon Hovey's work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence between a model structure on Smith ideals and a model structure on algebra morphisms induced by the cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all dagger-cofibrant operads. For chain complexes over a field of characteristic zero and the stable module category, this Quillen equivalence holds for all operads. We end with a comparison between the semi -model category approach and the 1-category approach to encoding the homotopy theory of algebras over dagger-cofibrant operads that are not necessarily admissible.
引用
收藏
页码:341 / 392
页数:55
相关论文
共 50 条
  • [31] Categories of graphs for operadic structures
    Hackney, Philip
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) : 155 - 212
  • [32] Galois algebras and monoidal functors between categories of representations of finite groups
    Davydov, AA
    JOURNAL OF ALGEBRA, 2001, 244 (01) : 273 - 301
  • [33] A duality for modules over monoidal categories of representations of semisimple Hopf algebras
    Tambara, D
    JOURNAL OF ALGEBRA, 2001, 241 (02) : 515 - 547
  • [34] Admissible replacements for simplicial monoidal model categories
    Bayindir, Haldun Özgur
    Chorny, Boris
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (01): : 43 - +
  • [35] Monoidal categories of modules over quantum affine algebras of type A and B
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-jin
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (01) : 43 - 77
  • [36] Monoidal categories of comodules for coquasi Hopf algebras and Radford's formula
    Ferrer Santos, Walter
    Franco, Ignacio Lopez
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 107 - +
  • [37] Moduli problems for operadic algebras
    Calaque, Damien
    Campos, Ricardo
    Nuiten, Joost
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3450 - 3544
  • [38] Monoidal categories of corings
    Kaoutit L.E.
    Annali dell’Università di Ferrara, 2005, 51 (1): : 197 - 207
  • [39] Derived A∞-algebras in an operadic context
    Livernet, Muriel
    Roitzheim, Constanze
    Whitehouse, Sarah
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (01): : 409 - 440
  • [40] A class of braided monoidal categories via quasitriangular Hopf π-crossed coproduct algebras
    Ma, Tianshui
    Liu, Linlin
    Li, Haiying
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (02)