Smith ideals of operadic algebras in monoidal model categories

被引:1
|
作者
White, David [1 ]
Yau, Donald [2 ]
机构
[1] Denison Univ, Dept Math & Comp Sci, Granville, OH 43023 USA
[2] Ohio State Univ Newark, Dept Math, Newark, OH USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 01期
关键词
BOUSFIELD LOCALIZATION; HOMOTOPY-THEORY;
D O I
10.2140/agt.2024.24.341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building upon Hovey's work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence between a model structure on Smith ideals and a model structure on algebra morphisms induced by the cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all dagger-cofibrant operads. For chain complexes over a field of characteristic zero and the stable module category, this Quillen equivalence holds for all operads. We end with a comparison between the semi -model category approach and the 1-category approach to encoding the homotopy theory of algebras over dagger-cofibrant operads that are not necessarily admissible.
引用
收藏
页码:341 / 392
页数:55
相关论文
共 50 条
  • [11] Topological Hopf algebras and braided monoidal categories
    Larson, RG
    APPLIED CATEGORICAL STRUCTURES, 1998, 6 (02) : 139 - 150
  • [12] ON HOPF-ALGEBRAS AND RIGID MONOIDAL CATEGORIES
    ULBRICH, KH
    ISRAEL JOURNAL OF MATHEMATICS, 1990, 72 (1-2) : 252 - 256
  • [13] Topological Hopf Algebras and Braided Monoidal Categories
    R. G. Larson
    Applied Categorical Structures, 1998, 6 : 139 - 150
  • [14] Vertex algebras and 2-monoidal categories
    Herscovich, Estanislao
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (05) : 1411 - 1462
  • [15] Presentably symmetric monoidal ∞-categories are represented by symmetric monoidal model categories
    Nikolaus, Thomas
    Sagave, Steffen
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (05): : 3189 - 3212
  • [16] Modules in monoidal model categories
    Lewis, L. Gaunce, Jr.
    Mandell, Michael A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) : 395 - 421
  • [17] NEW BRAIDED MONOIDAL CATEGORIES OVER MONOIDAL HOM-HOPF ALGEBRAS
    Wang, Shengxiang
    Ding, Nanqing
    COLLOQUIUM MATHEMATICUM, 2017, 146 (01) : 77 - 97
  • [18] Equivalences of monoidal model categories
    Schwede, Stefan
    Shipley, Brooke
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2003, 3 (01): : 287 - 334
  • [19] Quasitriangular Hopf group algebras and braided monoidal categories
    Zhao, Shiyin
    Wang, Jing
    Chen, Hui-Xiang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 893 - 909
  • [20] Quasitriangular Hopf group algebras and braided monoidal categories
    Shiyin Zhao
    Jing Wang
    Hui-Xiang Chen
    Czechoslovak Mathematical Journal, 2014, 64 : 893 - 909