Smith ideals of operadic algebras in monoidal model categories

被引:1
|
作者
White, David [1 ]
Yau, Donald [2 ]
机构
[1] Denison Univ, Dept Math & Comp Sci, Granville, OH 43023 USA
[2] Ohio State Univ Newark, Dept Math, Newark, OH USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2024年 / 24卷 / 01期
关键词
BOUSFIELD LOCALIZATION; HOMOTOPY-THEORY;
D O I
10.2140/agt.2024.24.341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building upon Hovey's work on Smith ideals for monoids, we develop a homotopy theory of Smith ideals for general operads in a symmetric monoidal category. For a sufficiently nice stable monoidal model category and an operad satisfying a cofibrancy condition, we show that there is a Quillen equivalence between a model structure on Smith ideals and a model structure on algebra morphisms induced by the cokernel and the kernel. For symmetric spectra, this applies to the commutative operad and all dagger-cofibrant operads. For chain complexes over a field of characteristic zero and the stable module category, this Quillen equivalence holds for all operads. We end with a comparison between the semi -model category approach and the 1-category approach to encoding the homotopy theory of algebras over dagger-cofibrant operads that are not necessarily admissible.
引用
收藏
页码:341 / 392
页数:55
相关论文
共 50 条
  • [41] Monoidal categories and multiextensions
    Breen, L
    COMPOSITIO MATHEMATICA, 1999, 117 (03) : 295 - 335
  • [42] GRADED MONOIDAL CATEGORIES
    FROHLICH, A
    WALL, CTC
    COMPOSITIO MATHEMATICA, 1974, 28 (03) : 229 - 285
  • [43] TRACES IN MONOIDAL CATEGORIES
    Stolz, Stephan
    Teichner, Peter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (08) : 4425 - 4464
  • [44] ON INVOLUTIVE MONOIDAL CATEGORIES
    Egger, J. M.
    THEORY AND APPLICATIONS OF CATEGORIES, 2011, 25 : 368 - U528
  • [45] Iterated monoidal categories
    Balteanu, C
    Fiedorowicz, Z
    Schwänzl, R
    Vogt, R
    ADVANCES IN MATHEMATICS, 2003, 176 (02) : 277 - 349
  • [46] Frobenius Monoidal Functors of Dijkgraaf-Witten Categories and Rigid Frobenius Algebras
    Hannah, Samuel
    Laugwitz, Robert
    Camacho, Ana Ros
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [47] Frobenius Monoidal Functors of Dijkgraaf-Witten Categories and Rigid Frobenius Algebras
    Hannah, Samuel
    Laugwitz, Robert
    Camacho, Ana Ros
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [48] Operads, Operadic Categories and the Blob Complex
    Batanin, Michael
    Markl, Martin
    APPLIED CATEGORICAL STRUCTURES, 2024, 32 (01)
  • [49] Space in Monoidal Categories
    Moliner, Pau Enrique
    Heunen, Chris
    Tull, Sean
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2018, (266): : 399 - 410
  • [50] LANGUAGES FOR MONOIDAL CATEGORIES
    JAY, CB
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 59 (01) : 61 - 85