Hardy and Rellich inequalities for anisotropic p-sub-Laplacians

被引:0
|
作者
M. Ruzhansky
B. Sabitbek
D. Suragan
机构
[1] Ghent University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Queen Mary University of London,School of Mathematical Sciences
[3] Institute of Mathematics and Mathematical Modeling,Department of Mathematics
[4] Al-Farabi Kazakh National University,undefined
[5] Nazarbayev University,undefined
关键词
Stratified group; Anisotropic ; -sub-Laplacian; Hardy inequality; Rellich inequality; Picone identity; 35A23; 35H20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish the subelliptic Picone type identities. As consequences, we obtain Hardy and Rellich type inequalities for anisotropic p-sub-Laplacians which are operators of the form Lpf:=∑i=1NXi|Xif|pi-2Xif,1<pi<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {L}}_{p}f:= \sum _{i=1}^{N} X_i\left( |X_i f|^{p_i-2} X_i f \right) ,\quad 1<p_i<\infty , \end{aligned}$$\end{document}where Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_i$$\end{document}, i=1,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots , N$$\end{document}, are the generators of the first stratum of a stratified (Lie) group. Moreover, analogues of Hardy type inequalities with multiple singularities and many-particle Hardy type inequalities are obtained on stratified groups.
引用
收藏
页码:380 / 398
页数:18
相关论文
共 50 条
  • [31] HARDY AND RELLICH INEQUALITIES ON THE COMPLEMENT OF CONVEX SETS
    Robinson, Derek W.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (01) : 98 - 119
  • [32] Hardy and Rellich inequalities for submanifolds in Hadamard spaces
    Batista, M.
    Mirandola, H.
    Vitorio, F.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) : 5813 - 5829
  • [33] Weighted Rellich and Hardy inequalities in Lp(•) spaces
    Edmunds, David
    Meskhi, Alexander
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [34] IMPROVED HARDY AND RELLICH INEQUALITIES ON RIEMANNIAN MANIFOLDS
    Kombe, Ismail
    Oezaydin, Murad
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) : 6191 - 6203
  • [35] Fractional Hardy–Sobolev Inequalities and Existence Results for Fractional Sub-Laplacians
    Kassymov A.
    Suragan D.
    Journal of Mathematical Sciences, 2020, 250 (2) : 337 - 350
  • [36] Factorizations and Hardy-Rellich-type inequalities
    Gesztesy, Fritz
    Littlejohn, Lance
    NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS, MATHEMATICAL PHYSICS, AND STOCHASTIC ANALYSIS: THE HELGE HOLDEN ANNIVERSARY VOLME, 2018, : 207 - 226
  • [37] Weighted Hardy and Rellich type inequalities on Riemannian manifolds
    Kombe, Ismail
    Yener, Abdullah
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (8-9) : 994 - 1004
  • [38] A note on a class of Hardy-Rellich type inequalities
    Di, Yanmei
    Jiang, Liya
    Shen, Shoufeng
    Jin, Yongyang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [39] Improved Hardy and Rellich inequalities on nonreversible Finsler manifolds
    Yuan, Lixia
    Zhao, Wei
    Shen, Yibing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1512 - 1545
  • [40] Hardy-Rellich inequalities in domains of the Euclidean space
    Avkhadiev, F. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 469 - 484