Hardy and Rellich inequalities for anisotropic p-sub-Laplacians

被引:0
|
作者
M. Ruzhansky
B. Sabitbek
D. Suragan
机构
[1] Ghent University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Queen Mary University of London,School of Mathematical Sciences
[3] Institute of Mathematics and Mathematical Modeling,Department of Mathematics
[4] Al-Farabi Kazakh National University,undefined
[5] Nazarbayev University,undefined
关键词
Stratified group; Anisotropic ; -sub-Laplacian; Hardy inequality; Rellich inequality; Picone identity; 35A23; 35H20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish the subelliptic Picone type identities. As consequences, we obtain Hardy and Rellich type inequalities for anisotropic p-sub-Laplacians which are operators of the form Lpf:=∑i=1NXi|Xif|pi-2Xif,1<pi<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {L}}_{p}f:= \sum _{i=1}^{N} X_i\left( |X_i f|^{p_i-2} X_i f \right) ,\quad 1<p_i<\infty , \end{aligned}$$\end{document}where Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_i$$\end{document}, i=1,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots , N$$\end{document}, are the generators of the first stratum of a stratified (Lie) group. Moreover, analogues of Hardy type inequalities with multiple singularities and many-particle Hardy type inequalities are obtained on stratified groups.
引用
收藏
页码:380 / 398
页数:18
相关论文
共 50 条