Hardy and Rellich inequalities for anisotropic p-sub-Laplacians

被引:0
|
作者
M. Ruzhansky
B. Sabitbek
D. Suragan
机构
[1] Ghent University,Department of Mathematics: Analysis, Logic and Discrete Mathematics
[2] Queen Mary University of London,School of Mathematical Sciences
[3] Institute of Mathematics and Mathematical Modeling,Department of Mathematics
[4] Al-Farabi Kazakh National University,undefined
[5] Nazarbayev University,undefined
关键词
Stratified group; Anisotropic ; -sub-Laplacian; Hardy inequality; Rellich inequality; Picone identity; 35A23; 35H20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish the subelliptic Picone type identities. As consequences, we obtain Hardy and Rellich type inequalities for anisotropic p-sub-Laplacians which are operators of the form Lpf:=∑i=1NXi|Xif|pi-2Xif,1<pi<∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {L}}_{p}f:= \sum _{i=1}^{N} X_i\left( |X_i f|^{p_i-2} X_i f \right) ,\quad 1<p_i<\infty , \end{aligned}$$\end{document}where Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_i$$\end{document}, i=1,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots , N$$\end{document}, are the generators of the first stratum of a stratified (Lie) group. Moreover, analogues of Hardy type inequalities with multiple singularities and many-particle Hardy type inequalities are obtained on stratified groups.
引用
收藏
页码:380 / 398
页数:18
相关论文
共 50 条
  • [41] Hardy type and rellich type inequalities on the heisenberg group
    Niu, PC
    Zhang, HQ
    Wang, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (12) : 3623 - 3630
  • [42] A note on a class of Hardy-Rellich type inequalities
    Yanmei Di
    Liya Jiang
    Shoufeng Shen
    Yongyang Jin
    Journal of Inequalities and Applications, 2013
  • [43] HARDY AND RELLICH INEQUALITIES IN NON-INTEGRAL DIMENSION
    SIMON, B
    JOURNAL OF OPERATOR THEORY, 1983, 9 (01) : 143 - 146
  • [44] Hardy and Rellich type inequalities on metric measure spaces
    Du, Feng
    Mao, Jing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 354 - 365
  • [45] Factorizations and Hardy-Rellich inequalities on stratified groups
    Ruzhansky, Michael
    Yessirkegenov, Nurgissa
    JOURNAL OF SPECTRAL THEORY, 2020, 10 (04) : 1361 - 1411
  • [46] Some Hardy and Rellich type inequalities for affine connections
    Wang, Pengyan
    Chang, Huiting
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (03)
  • [47] CHARACTERIZATIONS OF WEIGHTED HARDY-RELLICH INEQUALITIES AND THEIR APPLICATIONS
    Cao, Jun
    Jin, Yongyang
    Shen, Shoufeng
    Wu, Yurong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 873 - 893
  • [48] Hardy–Rellich inequalities with boundary remainder terms and applications
    Elvise Berchio
    Daniele Cassani
    Filippo Gazzola
    manuscripta mathematica, 2010, 131 : 427 - 458
  • [49] Some weighted Hardy and Rellich inequalities on the Heisenberg group
    Xi, Lin
    Dou, Jingbo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (03)
  • [50] HARDY AND RELLICH TYPE INEQUALITIES WITH TWO WEIGHT FUNCTIONS
    Ahmetolan, Semra
    Kombe, Ismail
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 937 - 948