Improved Hardy and Rellich inequalities on nonreversible Finsler manifolds

被引:5
|
作者
Yuan, Lixia [1 ]
Zhao, Wei [2 ]
Shen, Yibing [3 ]
机构
[1] Shanghai Normal Univ, Sch Math & Phys, Shanghai 200234, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy inequality; Rellich inequality; Nonreversible Finsler manifold; Sharp constant;
D O I
10.1016/j.jmaa.2017.10.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the sharp constants of quantitative Hardy and Rellich inequalities on nonreversible Finsler manifolds equipped with arbitrary measures. In particular, these inequalities can be globally refined by adding remainder terms like the Brezis Vazquez improvement, if Finsler manifolds are of strictly negative flag curvature, vanishing S-curvature and finite uniformity constant. Furthermore, these results remain valid when Finsler metrics are reversible. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1512 / 1545
页数:34
相关论文
共 50 条
  • [1] IMPROVED HARDY AND RELLICH INEQUALITIES ON RIEMANNIAN MANIFOLDS
    Kombe, Ismail
    Oezaydin, Murad
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) : 6191 - 6203
  • [2] Hardy and Rellich type inequalities on complete manifolds
    Xia, Changyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 84 - 90
  • [3] Quantitative Rellich inequalities on Finsler-Hadamard manifolds
    Kristaly, Alexandru
    Repovs, Dusan
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (06)
  • [4] IMPROVED HARDY-RELLICH INEQUALITIES
    Cassano, Biagio
    Cossetti, Lucrezia
    Fanelli, Luca
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (03) : 867 - 889
  • [5] Weighted Hardy and Rellich type inequalities on Riemannian manifolds
    Kombe, Ismail
    Yener, Abdullah
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (8-9) : 994 - 1004
  • [6] Sufficient Criteria for Obtaining Hardy Inequalities on Finsler Manifolds
    Mester, Agnes
    Peter, Ioan Radu
    Varga, Csaba
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
  • [7] Sufficient Criteria for Obtaining Hardy Inequalities on Finsler Manifolds
    Ágnes Mester
    Ioan Radu Peter
    Csaba Varga
    Mediterranean Journal of Mathematics, 2021, 18
  • [8] HARDY-POINCARE, RELLICH AND UNCERTAINTY PRINCIPLE INEQUALITIES ON RIEMANNIAN MANIFOLDS
    Kombe, Ismail
    Oezaydin, Murad
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (10) : 5035 - 5050
  • [9] IMPROVED HARDY AND RELLICH TYPE INEQUALITIES WITH TWO WEIGHT FUNCTIONS
    Ahmetolan, Semra
    Kombe, Ismail
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 885 - 896
  • [10] Hardy Inequalities with Best Constants on Finsler Metric Measure Manifolds
    Zhao, Wei
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1992 - 2032