Improved Hardy and Rellich inequalities on nonreversible Finsler manifolds

被引:5
|
作者
Yuan, Lixia [1 ]
Zhao, Wei [2 ]
Shen, Yibing [3 ]
机构
[1] Shanghai Normal Univ, Sch Math & Phys, Shanghai 200234, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy inequality; Rellich inequality; Nonreversible Finsler manifold; Sharp constant;
D O I
10.1016/j.jmaa.2017.10.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the sharp constants of quantitative Hardy and Rellich inequalities on nonreversible Finsler manifolds equipped with arbitrary measures. In particular, these inequalities can be globally refined by adding remainder terms like the Brezis Vazquez improvement, if Finsler manifolds are of strictly negative flag curvature, vanishing S-curvature and finite uniformity constant. Furthermore, these results remain valid when Finsler metrics are reversible. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1512 / 1545
页数:34
相关论文
共 50 条
  • [11] Hardy Inequalities with Best Constants on Finsler Metric Measure Manifolds
    Wei Zhao
    The Journal of Geometric Analysis, 2021, 31 : 1992 - 2032
  • [12] Improved hardy inequalities on Riemannian manifolds
    Mohanta, Kaushik
    Tyagi, Jagmohan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (10) : 1770 - 1781
  • [13] Finsler Hardy inequalities
    Mercaldo, Anna
    Sano, Megumi
    Takahashi, Futoshi
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (12) : 2370 - 2398
  • [14] Improved Hardy and Hardy-Rellich type inequalities with Bessel pairs via factorizations
    Nguyen Tuan Duy
    Nguyen Lam
    Nguyen Anh Triet
    JOURNAL OF SPECTRAL THEORY, 2020, 10 (04) : 1277 - 1302
  • [15] Hardy and Rellich Type Inequalities with Remainders
    Nasibullin, Ramil
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (01) : 87 - 110
  • [16] Hardy and Rellich type inequalities with remainders
    Ramil Nasibullin
    Czechoslovak Mathematical Journal, 2022, 72 : 87 - 110
  • [17] From Hardy to Rellich inequalities on graphs
    Keller, Matthias
    Pinchover, Yehuda
    Pogorzelski, Felix
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (03) : 458 - 477
  • [18] WEIGHTED MULTILINEAR HARDY AND RELLICH INEQUALITIES
    Edmunds, David E.
    Meskhi, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 395 - 398
  • [19] Hardy and Rellich Inequalities with Bessel Pairs
    Ruzhansky, Michael
    Sabitbek, Bolys
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025,
  • [20] On the generalized Hardy-Rellich inequalities
    Anoop, T., V
    Das, Ujjal
    Sarkar, Abhishek
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 897 - 919