A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems

被引:0
|
作者
Yang Wang
Yanping Chen
Yunqing Huang
Huaming Yi
机构
[1] Xiangtan University,School of Mathematics and Computational Science, Hunan Key Laboratory for Computation and Simulation in Science and Engineering
[2] South China Normal University,School of Mathematical Sciences
来源
关键词
Semi-linear interface problem; Two-grid method; Partially penalized; Immersed finite element method; Parabolic PDEs; 15A15; 15A09; 15A23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a family of two-grid algorithms for semi-linear parabolic interface problems based on Partially penalized immersed finite element discretizations. Optimal a priori error estimates are derived both in the energy norm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm, under the standard piecewise H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} regularity assumption for the exact solution. For the nonlinear right hand side, we investigate two-grid methods base on Newton method. The efficiency of the two-grid methods is confirmed theoretically and numerically.
引用
收藏
相关论文
共 50 条
  • [1] A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems
    Wang, Yang
    Chen, Yanping
    Huang, Yunqing
    Yi, Huaming
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [2] A two-grid method for semi-linear elliptic interface problems by partially penalized immersed finite element methods
    Wang, Yang
    Chen, Yanping
    Huang, Yunqing
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 169 (169) : 1 - 15
  • [3] Immersed finite element approximation for semi-linear parabolic interface problems combining with two-grid methods
    Chen, Yanping
    Yi, Huaming
    Wang, Yang
    Huang, Yunqing
    APPLIED NUMERICAL MATHEMATICS, 2022, 175 : 56 - 72
  • [4] Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods
    Yang WANG
    Yanping CHEN
    Yunqing HUANG
    Ying LIU
    Applied Mathematics and Mechanics(English Edition), 2019, 40 (11) : 1657 - 1676
  • [5] Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods
    Yang Wang
    Yanping Chen
    Yunqing Huang
    Ying Liu
    Applied Mathematics and Mechanics, 2019, 40 : 1657 - 1676
  • [6] Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods
    Wang, Yang
    Chen, Yanping
    Huang, Yunqing
    Liu, Ying
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (11) : 1657 - 1676
  • [7] Two-grid methods of finite element solutions for semi-linear elliptic interface problems
    Yanping Chen
    Qingfeng Li
    Yang Wang
    Yunqing Huang
    Numerical Algorithms, 2020, 84 : 307 - 330
  • [8] Two-grid methods of finite element solutions for semi-linear elliptic interface problems
    Chen, Yanping
    Li, Qingfeng
    Wang, Yang
    Huang, Yunqing
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 307 - 330
  • [9] Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems
    Lin, Tao
    Yang, Qing
    Zhang, Xu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (06) : 1925 - 1947
  • [10] Two-Grid Immersed Finite Volume Element Methods for Semi-Linear Elliptic Interface Problems with Non- Homogeneous Jump Conditions
    Wang, Quanxiang
    Wang, Liqun
    Xie, Jianqiang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (04) : 842 - 870