A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems

被引:0
|
作者
Yang Wang
Yanping Chen
Yunqing Huang
Huaming Yi
机构
[1] Xiangtan University,School of Mathematics and Computational Science, Hunan Key Laboratory for Computation and Simulation in Science and Engineering
[2] South China Normal University,School of Mathematical Sciences
来源
关键词
Semi-linear interface problem; Two-grid method; Partially penalized; Immersed finite element method; Parabolic PDEs; 15A15; 15A09; 15A23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a family of two-grid algorithms for semi-linear parabolic interface problems based on Partially penalized immersed finite element discretizations. Optimal a priori error estimates are derived both in the energy norm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm, under the standard piecewise H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} regularity assumption for the exact solution. For the nonlinear right hand side, we investigate two-grid methods base on Newton method. The efficiency of the two-grid methods is confirmed theoretically and numerically.
引用
收藏
相关论文
共 50 条
  • [41] Two-grid finite element methods for nonlinear time-fractional parabolic equations
    Jie Zhou
    Xing Yao
    Wansheng Wang
    Numerical Algorithms, 2022, 90 : 709 - 730
  • [42] QUADRATURE BASED FINITE ELEMENT METHODS FOR LINEAR PARABOLIC INTERFACE PROBLEMS
    Deka, Bhupen
    Deka, Ram Charan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) : 717 - 737
  • [43] Immersed finite element methods for parabolic equations with moving interface
    He, Xiaoming
    Lin, Tao
    Lin, Yanping
    Zhang, Xu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) : 619 - 646
  • [44] Linearized transformed L1 finite element methods for semi-linear time-fractional parabolic problems
    Han, Yuxin
    Huang, Xin
    Gu, Wei
    Zheng, Bolong
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 458
  • [45] A partially penalized P1/CR immersed finite element method for planar elasticity interface problems
    Liu, Angran
    Chen, Jinru
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (06) : 2318 - 2347
  • [46] A P2-P1 PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHOD FOR STOKES INTERFACE PROBLEMS
    Chen, Yuan
    Zhang, Xu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (01) : 120 - 141
  • [47] Superconvergence of immersed finite element methods for interface problems
    Waixiang Cao
    Xu Zhang
    Zhimin Zhang
    Advances in Computational Mathematics, 2017, 43 : 795 - 821
  • [48] Superconvergence of immersed finite element methods for interface problems
    Cao, Waixiang
    Zhang, Xu
    Zhang, Zhimin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (04) : 795 - 821
  • [49] A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations
    Chen, Chuanjun
    Liu, Wei
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [50] An adaptive immersed finite element method for linear parabolic interface problems with nonzero flux jump
    Tanushree Ray
    Rajen Kumar Sinha
    Calcolo, 2023, 60