A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems

被引:0
|
作者
Yang Wang
Yanping Chen
Yunqing Huang
Huaming Yi
机构
[1] Xiangtan University,School of Mathematics and Computational Science, Hunan Key Laboratory for Computation and Simulation in Science and Engineering
[2] South China Normal University,School of Mathematical Sciences
来源
关键词
Semi-linear interface problem; Two-grid method; Partially penalized; Immersed finite element method; Parabolic PDEs; 15A15; 15A09; 15A23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a family of two-grid algorithms for semi-linear parabolic interface problems based on Partially penalized immersed finite element discretizations. Optimal a priori error estimates are derived both in the energy norm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm, under the standard piecewise H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} regularity assumption for the exact solution. For the nonlinear right hand side, we investigate two-grid methods base on Newton method. The efficiency of the two-grid methods is confirmed theoretically and numerically.
引用
收藏
相关论文
共 50 条
  • [31] A two-grid method for the semi-linear reaction-diffusion system of the solutes in the groundwater flow by finite volume element
    Liu, Wei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 142 : 34 - 50
  • [32] Two-grid methods for semilinear interface problems
    Holst, Michael
    Szypowski, Ryan
    Zhu, Yunrong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1729 - 1748
  • [33] Analysis of Two-Grid Methods for Nonlinear Parabolic Equations by Expanded Mixed Finite Element Methods
    Chen, Yanping
    Luan, Peng
    Lu, Zuliang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2009, 1 (06) : 830 - 844
  • [34] RECOVERY-BASED A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS BASED ON PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS
    Chen, Yanping
    Deng, Zhirou
    Huang, Yunqing
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (01) : 126 - 155
  • [35] A TWO-GRID MULTIPOINT FLUX MIXED FINITE ELEMENT METHOD FOR NONLINEAR PARABOLIC PROBLEMS
    Xu, Wenwen
    Li, Xindong
    Song, Nana
    Yang, Lu
    Yuan, Xiqian
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (03): : 1310 - 1329
  • [36] Two-grid finite element methods for nonlinear time-fractional parabolic equations
    Zhou, Jie
    Yao, Xing
    Wang, Wansheng
    NUMERICAL ALGORITHMS, 2022, 90 (02) : 709 - 730
  • [37] Two-Grid method for nonlinear parabolic equations by expanded mixed finite element methods
    Chen, Yanping
    Chen, Luoping
    Zhang, Xiaochun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) : 1238 - 1256
  • [38] Two-grid finite volume element method for linear and nonlinear elliptic problems
    Chunjia Bi
    Victor Ginting
    Numerische Mathematik, 2007, 108 : 177 - 198
  • [39] Two-grid finite volume element method for linear and nonlinear elliptic problems
    Bi, Chunjia
    Ginting, Victor
    NUMERISCHE MATHEMATIK, 2007, 108 (02) : 177 - 198
  • [40] ANALYSIS OF ADAPTIVE TWO-GRID FINITE ELEMENT ALGORITHMS FOR LINEAR AND NONLINEAR PROBLEMS
    Li, Yukun
    Zhang, Yi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A908 - A928