A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems

被引:0
|
作者
Yang Wang
Yanping Chen
Yunqing Huang
Huaming Yi
机构
[1] Xiangtan University,School of Mathematics and Computational Science, Hunan Key Laboratory for Computation and Simulation in Science and Engineering
[2] South China Normal University,School of Mathematical Sciences
来源
Journal of Scientific Computing | 2021年 / 88卷
关键词
Semi-linear interface problem; Two-grid method; Partially penalized; Immersed finite element method; Parabolic PDEs; 15A15; 15A09; 15A23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a family of two-grid algorithms for semi-linear parabolic interface problems based on Partially penalized immersed finite element discretizations. Optimal a priori error estimates are derived both in the energy norm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm, under the standard piecewise H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} regularity assumption for the exact solution. For the nonlinear right hand side, we investigate two-grid methods base on Newton method. The efficiency of the two-grid methods is confirmed theoretically and numerically.
引用
收藏
相关论文
共 50 条
  • [21] Anew symmetric mixed element method for semi-linear parabolic problem based on two-grid discretization
    Han, Huiran
    Zhang, Jiansong
    Ji, Bingjie
    Yu, Yue
    Yu, Yun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 108 : 206 - 215
  • [22] Superconvergence of partially penalized immersed finite element methods
    Guo, Hailong
    Yang, Xu
    Zhang, Zhimin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 2123 - 2144
  • [23] Analysis of two-grid method for semi-linear elliptic equations by new mixed finite element scheme
    Weng, Zhifeng
    Feng, Xinlong
    Zhai, Shuying
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4826 - 4835
  • [24] A new two-grid mixed finite element analysis of semi-linear reaction-diffusion equation
    Zhang, Jiansong
    Han, Huiran
    Yu, Yun
    Liu, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 92 : 172 - 179
  • [25] Error estimates for a partially penalized immersed finite element method for elasticity interface problems
    Guo, Ruchi
    Lin, Tao
    Lin, Yanping
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (01): : 1 - 24
  • [26] Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems
    Chen, Yanping
    Wang, Yang
    Huang, Yunqing
    Fu, Longxia
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 204 - 222
  • [27] Discontinuous Galerkin immersed finite element methods for parabolic interface problems
    Yang, Qing
    Zhang, Xu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 127 - 139
  • [28] TWO-GRID CHARACTERISTIC FINITE VOLUME METHODS FOR NONLINEAR PARABOLIC PROBLEMS
    Zhang, Tong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (05) : 470 - 487
  • [29] Two-grid methods for finite volume element approximations of nonlinear parabolic equations
    Chen, Chuanjun
    Yang, Min
    Bi, Chunjia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 123 - 132
  • [30] Two-grid methods of finite element approximation for parabolic integro-differential optimal control problems
    Xu, Changling
    Li, Huilai
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (08): : 4818 - 4842