Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems

被引:45
|
作者
Lin, Tao [1 ]
Yang, Qing [2 ]
Zhang, Xu [3 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Cartesian mesh methods; error estimation; parabolic interface problems; partially penalized immersed finite element; APPROXIMATION CAPABILITY; MOVING INTERFACE; EQUATIONS; SPACE; FORMULATION;
D O I
10.1002/num.21973
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semidiscrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1925 / 1947
页数:23
相关论文
共 50 条
  • [1] Optimal error bounds for partially penalized immersed finite element methods for parabolic interface problems
    Lin, Tao
    Zhuang, Qiao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366
  • [2] PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS
    Lin, Tao
    Lin, Yanping
    Zhang, Xu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 1121 - 1144
  • [3] Numerical Analysis of Partially Penalized Immersed Finite Element Methods for Hyperbolic Interface Problems
    Yang, Qing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (02) : 272 - 298
  • [4] IMPROVED ERROR ESTIMATION FOR THE PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS
    Guo, Ruchi
    Lin, Tao
    Zhuang, Qiao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (04) : 575 - 589
  • [5] A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems
    Yang Wang
    Yanping Chen
    Yunqing Huang
    Huaming Yi
    Journal of Scientific Computing, 2021, 88
  • [6] A Family of Two-Grid Partially Penalized Immersed Finite Element Methods for Semi-linear Parabolic Interface Problems
    Wang, Yang
    Chen, Yanping
    Huang, Yunqing
    Yi, Huaming
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [7] Superconvergence of partially penalized immersed finite element methods
    Guo, Hailong
    Yang, Xu
    Zhang, Zhimin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 2123 - 2144
  • [8] Error estimates for a partially penalized immersed finite element method for elasticity interface problems
    Guo, Ruchi
    Lin, Tao
    Lin, Yanping
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (01): : 1 - 24
  • [9] Error analysis of symmetric linear bilinear partially penalized immersed finite element methods for Helmholtz interface problems
    Guo, Ruchi
    Lin, Tao
    Lin, Yanping
    Zhuang, Qiao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 390
  • [10] Discontinuous Galerkin immersed finite element methods for parabolic interface problems
    Yang, Qing
    Zhang, Xu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 127 - 139