Error analysis of symmetric linear bilinear partially penalized immersed finite element methods for Helmholtz interface problems

被引:6
|
作者
Guo, Ruchi [1 ,4 ]
Lin, Tao [1 ]
Lin, Yanping [2 ]
Zhuang, Qiao [1 ,3 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
[3] Univ Tennessee, Chattanooga, TN 37403 USA
[4] Univ Calif Irvine, Irvine, CA 92697 USA
关键词
Helmholtz type; Interface problems; Immersed finite element methods; Error estimates;
D O I
10.1016/j.cam.2020.113378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents an error analysis of the symmetric linear/bilinear partially penalized immersed finite element (PPIFE) methods for interface problems of Helmholtz equations. Under the assumption that the exact solution possesses a usual piecewise H-2 regularity, the optimal error bounds for the PPIFE solutions are derived in an energy norm and the usual L-2 norm. A numerical example is conducted to validate the theoretical conclusions. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条