Monadic MV-algebras II: Monadic implicational subreducts

被引:0
|
作者
Cecilia R. Cimadamore
J. Patricio Díaz Varela
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] Instituto de Matemática de Bahía Blanca (INMABB) (CONICET-UNS),undefined
来源
Algebra universalis | 2014年 / 71卷
关键词
Primary: 06D35; Secondary: 08B15; 06D99; monadic MV-algebras; monadic implicational subreducts; Łukasiewicz implication algebras; subvarieties; equational bases;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the class of all monadic implicational subreducts, that is, the {→,∀,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{\rightarrow, \forall,1\}}$$\end{document}-subreducts of the class of monadic MV-algebras. We prove that this class is an equational class, which we denote by ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document}, and we give an equational basis for this variety. An algebra in ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} is called a monadic Łukasiewicz implication algebra. We characterize the subdirectly irreducible members of ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} and the congruences of every monadic Łukasiewicz implication algebra by monadic filters. We prove that ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} is generated by its finite members. Finally, we completely describe the lattice of subvarieties, and we give an equational basis for each proper subvariety.
引用
收藏
页码:201 / 219
页数:18
相关论文
共 50 条
  • [1] Monadic MV-algebras II: Monadic implicational subreducts
    Cimadamore, Cecilia R.
    Diaz Varela, J. Patricio
    ALGEBRA UNIVERSALIS, 2014, 71 (03) : 201 - 219
  • [2] On monadic MV-algebras
    Di Nola, A
    Grigolia, R
    ANNALS OF PURE AND APPLIED LOGIC, 2004, 128 (1-3) : 125 - 139
  • [3] On state monadic MV-algebras
    He, Pengfei
    Wei, Ya
    Wang, Juntao
    FUZZY SETS AND SYSTEMS, 2024, 485
  • [4] Monadic MV-algebras are Equivalent to Monadic ℓ-groups with Strong Unit
    C. Cimadamore
    J. P. Díaz Varela
    Studia Logica, 2011, 98 : 175 - 201
  • [5] A topological duality for monadic MV-algebras
    Figallo-Orellano, Aldo
    SOFT COMPUTING, 2017, 21 (23) : 7119 - 7123
  • [6] A topological duality for monadic MV-algebras
    Aldo Figallo-Orellano
    Soft Computing, 2017, 21 : 7119 - 7123
  • [7] Topological spaces of monadic MV-algebras
    Di Nola, Antonio
    Grigolia, Revaz
    Lenzi, Giacomo
    SOFT COMPUTING, 2019, 23 (02) : 375 - 381
  • [8] Topological spaces of monadic MV-algebras
    Antonio Di Nola
    Revaz Grigolia
    Giacomo Lenzi
    Soft Computing, 2019, 23 : 375 - 381
  • [9] Monadic MV-algebras I: a study of subvarieties
    Cecilia R. Cimadamore
    J. Patricio Díaz Varela
    Algebra universalis, 2014, 71 : 71 - 100
  • [10] Monadic MV-algebras are Equivalent to Monadic l-groups with Strong Unit
    Cimadamore, C.
    Diaz Varela, J. P.
    STUDIA LOGICA, 2011, 98 (1-2) : 175 - 201