Monadic MV-algebras II: Monadic implicational subreducts

被引:0
|
作者
Cecilia R. Cimadamore
J. Patricio Díaz Varela
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] Instituto de Matemática de Bahía Blanca (INMABB) (CONICET-UNS),undefined
来源
Algebra universalis | 2014年 / 71卷
关键词
Primary: 06D35; Secondary: 08B15; 06D99; monadic MV-algebras; monadic implicational subreducts; Łukasiewicz implication algebras; subvarieties; equational bases;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the class of all monadic implicational subreducts, that is, the {→,∀,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{\rightarrow, \forall,1\}}$$\end{document}-subreducts of the class of monadic MV-algebras. We prove that this class is an equational class, which we denote by ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document}, and we give an equational basis for this variety. An algebra in ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} is called a monadic Łukasiewicz implication algebra. We characterize the subdirectly irreducible members of ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} and the congruences of every monadic Łukasiewicz implication algebra by monadic filters. We prove that ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} is generated by its finite members. Finally, we completely describe the lattice of subvarieties, and we give an equational basis for each proper subvariety.
引用
收藏
页码:201 / 219
页数:18
相关论文
共 50 条
  • [41] Free monadic Tarski algebras
    Figallo, AV
    ALGEBRA UNIVERSALIS, 1996, 35 (01) : 141 - 150
  • [42] Monadic De Morgan algebras
    Petrovich, A
    MODELS, ALGEBRAS, AND PROOFS, 1999, 203 : 315 - 333
  • [43] Functional monadic Heyting algebras
    Bezhanishvili, G
    Harding, J
    ALGEBRA UNIVERSALIS, 2002, 48 (01) : 1 - 10
  • [44] UNIVERSAL CLASSES OF MONADIC ALGEBRAS
    LUCAS, T
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1976, 22 (01): : 35 - 44
  • [45] MONADIC AND POLYADIC LUKASIEWICZIAN ALGEBRAS
    GEORGESCU, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (06): : 416 - +
  • [46] Functional Monadic Bounded Algebras
    Robert Goldblatt
    Studia Logica, 2010, 96 : 41 - 48
  • [47] Functional monadic Heyting algebras
    Guram Bezhanishvili
    John Harding
    algebra universalis, 2002, 48 : 1 - 10
  • [48] Monadic curry algebras Qτ
    Abe, Jair Minoro
    Akama, Seiki
    Nakamatsu, Kazumi
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT II, PROCEEDINGS, 2007, 4693 : 893 - 900
  • [49] Monadic NM-algebras
    Wang, Juntao
    He, Pengfei
    She, Yanhong
    LOGIC JOURNAL OF THE IGPL, 2019, 27 (06) : 812 - 835
  • [50] MONADIC PSEUDO BE-ALGEBRAS
    Ciungu, Lavinia Corina
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1013 - 1040