Monadic MV-algebras II: Monadic implicational subreducts

被引:0
|
作者
Cecilia R. Cimadamore
J. Patricio Díaz Varela
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] Instituto de Matemática de Bahía Blanca (INMABB) (CONICET-UNS),undefined
来源
Algebra universalis | 2014年 / 71卷
关键词
Primary: 06D35; Secondary: 08B15; 06D99; monadic MV-algebras; monadic implicational subreducts; Łukasiewicz implication algebras; subvarieties; equational bases;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the class of all monadic implicational subreducts, that is, the {→,∀,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{\rightarrow, \forall,1\}}$$\end{document}-subreducts of the class of monadic MV-algebras. We prove that this class is an equational class, which we denote by ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document}, and we give an equational basis for this variety. An algebra in ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} is called a monadic Łukasiewicz implication algebra. We characterize the subdirectly irreducible members of ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} and the congruences of every monadic Łukasiewicz implication algebra by monadic filters. We prove that ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{ML}}$$\end{document} is generated by its finite members. Finally, we completely describe the lattice of subvarieties, and we give an equational basis for each proper subvariety.
引用
收藏
页码:201 / 219
页数:18
相关论文
共 50 条
  • [11] Monadic MV-algebras I: a study of subvarieties
    Cimadamore, Cecilia R.
    Patricio Diaz Varela, J.
    ALGEBRA UNIVERSALIS, 2014, 71 (01) : 71 - 100
  • [12] PROJECTIVITY AND UNIFICATION IN LOCALLY FINITE VARIETIES OF MONADIC MV-ALGEBRAS
    Di Nola, A.
    Grigolia, R.
    Lenzi, G.
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2019, 173 (02) : 21 - 29
  • [13] Representations of monadic MV -algebras
    Belluce L.P.
    Grigolia R.
    Lettieri A.
    Studia Logica, 2005, 81 (1) : 123 - 144
  • [14] Subreducts of MV-algebras with product and product residuation
    Montagna, F
    ALGEBRA UNIVERSALIS, 2005, 53 (01) : 109 - 137
  • [15] Subreducts of MV-algebras with product and product residuation
    Franco Montagna
    algebra universalis, 2005, 53 : 109 - 137
  • [16] ON THE LATTICE OF THE SUBVARIETIES OF MONADIC MV (C)-ALGEBRAS
    Di Nola, Antonio
    Grigolia, Revaz
    Lenzi, Giacomo
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2018, 5 (01): : 437 - 454
  • [17] Implicative subreducts of MV-algebras: free and weakly projective objects
    Castano, Diego N.
    ALGEBRA UNIVERSALIS, 2017, 78 (04) : 579 - 600
  • [18] Implicative subreducts of MV-algebras: free and weakly projective objects
    Diego N. Castaño
    Algebra universalis, 2017, 78 : 579 - 600
  • [19] The lattices of monadic filters in monadic BL-algebras
    Wang, Juntao
    Wang, Mei
    IAENG International Journal of Applied Mathematics, 2020, 50 (03): : 656 - 660
  • [20] Quantum monadic algebras
    Harding, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (39)