Monadic MV-algebras I: a study of subvarieties

被引:0
|
作者
Cecilia R. Cimadamore
J. Patricio Díaz Varela
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] Instituto de Matemática de Bahía Blanca (INMABB) (CONICET-UNS),undefined
来源
Algebra universalis | 2014年 / 71卷
关键词
Primary: 06D35; Secondary: 08B15; 03G25; monadic MV-algebras; functional representation; subvarieties; equational bases;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study and classify some important subvarieties of the variety of monadic MV-algebras. We introduce the notion of width of a monadic MV-algebra and we prove that the equational class of monadic MV-algebras of finite width k is generated by the monadic MV-algebra [0, 1]k. We describe completely the lattice of subvarieties of the subvariety V([0,1]k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{V}([{\bf 0}, {\bf 1}]^k)}$$\end{document} generated by [0, 1]k. We prove that the subvariety generated by a subdirectly irreducible monadic MV-algebra of finite width depends on the order and rank of ∀A, the partition associated to A of the set of coatoms of the boolean subalgebra B(A) of its complemented elements, and the width of the algebra. We also give an equational basis for each proper subvariety in V([0,1]k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{V}([{\bf 0}, {\bf 1}]^k)}$$\end{document}. Finally, we give some results about subvarieties of infinite width.
引用
收藏
页码:71 / 100
页数:29
相关论文
共 50 条
  • [1] Monadic MV-algebras I: a study of subvarieties
    Cimadamore, Cecilia R.
    Patricio Diaz Varela, J.
    ALGEBRA UNIVERSALIS, 2014, 71 (01) : 71 - 100
  • [2] On monadic MV-algebras
    Di Nola, A
    Grigolia, R
    ANNALS OF PURE AND APPLIED LOGIC, 2004, 128 (1-3) : 125 - 139
  • [3] On state monadic MV-algebras
    He, Pengfei
    Wei, Ya
    Wang, Juntao
    FUZZY SETS AND SYSTEMS, 2024, 485
  • [4] ON THE LATTICE OF THE SUBVARIETIES OF MONADIC MV (C)-ALGEBRAS
    Di Nola, Antonio
    Grigolia, Revaz
    Lenzi, Giacomo
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2018, 5 (01): : 437 - 454
  • [5] Monadic MV-algebras II: Monadic implicational subreducts
    Cimadamore, Cecilia R.
    Diaz Varela, J. Patricio
    ALGEBRA UNIVERSALIS, 2014, 71 (03) : 201 - 219
  • [6] A topological duality for monadic MV-algebras
    Figallo-Orellano, Aldo
    SOFT COMPUTING, 2017, 21 (23) : 7119 - 7123
  • [7] Monadic MV-algebras II: Monadic implicational subreducts
    Cecilia R. Cimadamore
    J. Patricio Díaz Varela
    Algebra universalis, 2014, 71 : 201 - 219
  • [8] A topological duality for monadic MV-algebras
    Aldo Figallo-Orellano
    Soft Computing, 2017, 21 : 7119 - 7123
  • [9] Topological spaces of monadic MV-algebras
    Di Nola, Antonio
    Grigolia, Revaz
    Lenzi, Giacomo
    SOFT COMPUTING, 2019, 23 (02) : 375 - 381
  • [10] Topological spaces of monadic MV-algebras
    Antonio Di Nola
    Revaz Grigolia
    Giacomo Lenzi
    Soft Computing, 2019, 23 : 375 - 381