Monadic MV-algebras I: a study of subvarieties

被引:0
|
作者
Cecilia R. Cimadamore
J. Patricio Díaz Varela
机构
[1] Universidad Nacional del Sur,Departamento de Matemática
[2] Instituto de Matemática de Bahía Blanca (INMABB) (CONICET-UNS),undefined
来源
Algebra universalis | 2014年 / 71卷
关键词
Primary: 06D35; Secondary: 08B15; 03G25; monadic MV-algebras; functional representation; subvarieties; equational bases;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study and classify some important subvarieties of the variety of monadic MV-algebras. We introduce the notion of width of a monadic MV-algebra and we prove that the equational class of monadic MV-algebras of finite width k is generated by the monadic MV-algebra [0, 1]k. We describe completely the lattice of subvarieties of the subvariety V([0,1]k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{V}([{\bf 0}, {\bf 1}]^k)}$$\end{document} generated by [0, 1]k. We prove that the subvariety generated by a subdirectly irreducible monadic MV-algebra of finite width depends on the order and rank of ∀A, the partition associated to A of the set of coatoms of the boolean subalgebra B(A) of its complemented elements, and the width of the algebra. We also give an equational basis for each proper subvariety in V([0,1]k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{V}([{\bf 0}, {\bf 1}]^k)}$$\end{document}. Finally, we give some results about subvarieties of infinite width.
引用
收藏
页码:71 / 100
页数:29
相关论文
共 50 条
  • [11] Monadic MV-algebras are Equivalent to Monadic ℓ-groups with Strong Unit
    C. Cimadamore
    J. P. Díaz Varela
    Studia Logica, 2011, 98 : 175 - 201
  • [12] Monadic MV-algebras are Equivalent to Monadic l-groups with Strong Unit
    Cimadamore, C.
    Diaz Varela, J. P.
    STUDIA LOGICA, 2011, 98 (1-2) : 175 - 201
  • [13] PROJECTIVITY AND UNIFICATION IN LOCALLY FINITE VARIETIES OF MONADIC MV-ALGEBRAS
    Di Nola, A.
    Grigolia, R.
    Lenzi, G.
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2019, 173 (02) : 21 - 29
  • [14] Boolean products of MV-Algebras: Hypernormal MV-algebras
    Cignoli, R
    Torrell, AT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) : 637 - 653
  • [15] Stone MV-algebras and strongly complete MV-algebras
    Jean B. Nganou
    Algebra universalis, 2017, 77 : 147 - 161
  • [16] Stone MV-algebras and strongly complete MV-algebras
    Nganou, Jean B.
    ALGEBRA UNIVERSALIS, 2017, 77 (02) : 147 - 161
  • [17] DERIVATIONS OF MV-ALGEBRAS FROM HYPER MV-ALGEBRAS
    Hamidi, M.
    Borzooei, R. A.
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (03): : 643 - 659
  • [18] Study of MV-algebras via derivations
    Wang, Jun Tao
    She, Yan Hong
    Qian, Ting
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (03): : 259 - 278
  • [19] Natural dualities for varieties of MV-algebras, I
    Niederkorn, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (01) : 58 - 73
  • [20] Some Results on Quasi MV-Algebras and Perfect Quasi MV-Algebras
    Dvurecenskij, Anatolij
    Zahiri, Omid
    STUDIA LOGICA, 2025,