A topological duality for monadic MV-algebras

被引:6
|
作者
Figallo-Orellano, Aldo [1 ]
机构
[1] Univ Nacl Sur, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Compendex;
D O I
10.1007/s00500-016-2255-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monadic MV-algebras are an algebraic model of first-order infinite-valued Aukasiewicz logic in which only one propositional variable is considered. In this paper, we determine a topological duality for these algebras following well-known P. Halmos' and H. Priestley's dualities.
引用
收藏
页码:7119 / 7123
页数:5
相关论文
共 50 条
  • [1] A topological duality for monadic MV-algebras
    Aldo Figallo-Orellano
    Soft Computing, 2017, 21 : 7119 - 7123
  • [2] Topological spaces of monadic MV-algebras
    Di Nola, Antonio
    Grigolia, Revaz
    Lenzi, Giacomo
    SOFT COMPUTING, 2019, 23 (02) : 375 - 381
  • [3] Topological spaces of monadic MV-algebras
    Antonio Di Nola
    Revaz Grigolia
    Giacomo Lenzi
    Soft Computing, 2019, 23 : 375 - 381
  • [4] On monadic MV-algebras
    Di Nola, A
    Grigolia, R
    ANNALS OF PURE AND APPLIED LOGIC, 2004, 128 (1-3) : 125 - 139
  • [5] On state monadic MV-algebras
    He, Pengfei
    Wei, Ya
    Wang, Juntao
    FUZZY SETS AND SYSTEMS, 2024, 485
  • [6] Monadic MV-algebras II: Monadic implicational subreducts
    Cimadamore, Cecilia R.
    Diaz Varela, J. Patricio
    ALGEBRA UNIVERSALIS, 2014, 71 (03) : 201 - 219
  • [7] Monadic MV-algebras II: Monadic implicational subreducts
    Cecilia R. Cimadamore
    J. Patricio Díaz Varela
    Algebra universalis, 2014, 71 : 201 - 219
  • [8] Topological MV-algebras
    Hoo, CS
    TOPOLOGY AND ITS APPLICATIONS, 1997, 81 (02) : 103 - 121
  • [9] Monadic MV-algebras are Equivalent to Monadic ℓ-groups with Strong Unit
    C. Cimadamore
    J. P. Díaz Varela
    Studia Logica, 2011, 98 : 175 - 201
  • [10] Monadic MV-algebras I: a study of subvarieties
    Cecilia R. Cimadamore
    J. Patricio Díaz Varela
    Algebra universalis, 2014, 71 : 71 - 100