On Y-coordinates of Pell equations which are Fibonacci numbers

被引:0
|
作者
Florian Luca
Faith S. Zottor
机构
[1] University of the Witwatersrand,School of Mathematics
[2] Centro de Ciencias Matemáticas UNAM,undefined
关键词
Diophantine equations; Lucas sequence; Pell equation; 11D61; 11B39; 11D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 2$$\end{document} be an integer which is not a square. We show that if (Fn)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_n)_{n\ge 0}$$\end{document} is the Fibonacci sequence and (Xm,Ym)m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_m, Y_m)_{m\ge 1}$$\end{document} is the mth solution of the Pell equation X2-dY2=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^2 -dY^2 = \pm 1$$\end{document}, then the equation Ym=Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_m = F_n$$\end{document} has at most two positive integer solutions (m, n) except for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} when it has three solutions (m,n)=(1,2),(2,3),(3,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,n)=(1,2),(2,3),(3,5)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Correction to: X-coordinates of Pell equations as sums of two Tribonacci numbers
    Eric F. Bravo
    Carlos Alexis Gómez Ruiz
    Florian Luca
    Periodica Mathematica Hungarica, 2020, 80 : 145 - 146
  • [42] SOLUTIONS - A determinant with Fibonacci, Lucas and Pell numbers
    Cook, Charles K.
    FIBONACCI QUARTERLY, 2007, 45 (02): : 188 - 188
  • [43] ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Herrera, Jose L.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 535 - 547
  • [44] On the connections between Pell numbers and Fibonacci p-numbers
    Shannon, Anthony G.
    Erdag, Ozgur
    Deveci, Omur
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (01) : 148 - 160
  • [45] Properties of a class of numbers related to the Fibonacci, Lucas and Pell numbers
    Dannan, FM
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON DIFFERENCE EQUATIONS: NEW PROGRESS IN DIFFERENCE EQUATIONS, 2004, : 399 - 406
  • [46] A NOTE ON PELL-PADOVAN NUMBERS AND THEIR CONNECTION WITH FIBONACCI NUMBERS
    Goy, T.
    Sharyn, S.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (02) : 280 - 288
  • [47] On the X-coordinates of Pell equations which are rep-digits, II
    Luca, Florian
    Togan, Sossa Victorin
    Togbe, Alain
    ANNALES MATHEMATICAE ET INFORMATICAE, 2019, 50 : 131 - 144
  • [48] On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers
    Li, Hsuan-Chu
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8353 - 8358
  • [49] Sums of Pell/Lucas Polynomials and Fibonacci/Lucas Numbers
    Guo, Dongwei
    Chu, Wenchang
    MATHEMATICS, 2022, 10 (15)
  • [50] ON A GENERALIZED PELL EQUATION AND A CHARACTERIZATION OF THE FIBONACCI AND LUCAS NUMBERS
    Euler, Russell
    Sadek, Jawad
    FIBONACCI QUARTERLY, 2014, 52 (03): : 243 - 246