On Y-coordinates of Pell equations which are Fibonacci numbers

被引:0
|
作者
Florian Luca
Faith S. Zottor
机构
[1] University of the Witwatersrand,School of Mathematics
[2] Centro de Ciencias Matemáticas UNAM,undefined
关键词
Diophantine equations; Lucas sequence; Pell equation; 11D61; 11B39; 11D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 2$$\end{document} be an integer which is not a square. We show that if (Fn)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_n)_{n\ge 0}$$\end{document} is the Fibonacci sequence and (Xm,Ym)m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_m, Y_m)_{m\ge 1}$$\end{document} is the mth solution of the Pell equation X2-dY2=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^2 -dY^2 = \pm 1$$\end{document}, then the equation Ym=Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_m = F_n$$\end{document} has at most two positive integer solutions (m, n) except for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} when it has three solutions (m,n)=(1,2),(2,3),(3,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,n)=(1,2),(2,3),(3,5)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] x-Coordinates of Pell equations which are Tribonacci numbers II
    Bir Kafle
    Florian Luca
    Alain Togbé
    Periodica Mathematica Hungarica, 2019, 79 : 157 - 167
  • [22] x-Coordinates of Pell equations which are Tribonacci numbers II
    Kafle, Bir
    Luca, Florian
    Togbe, Alain
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (02) : 157 - 167
  • [23] ON THE x-COORDINATES OF PELL EQUATIONS THAT ARE PRODUCTS OF TWO PELL NUMBERS
    Ddamulira, Mahadi
    Luca, Florian
    MATHEMATICA SLOVACA, 2024, 74 (01) : 41 - 56
  • [24] The X-coordinates of Pell equations and Padovan numbers
    Rihane, Salah Eddine
    Hernane, Mohand Ouamar
    Togbe, Alain
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 207 - 223
  • [25] On X-coordinates of Pell equations which are repdigits
    Gomez, Carlos A.
    Luca, Florian
    Zottor, Faith Shadow
    RESEARCH IN NUMBER THEORY, 2020, 6 (04)
  • [26] On X-coordinates of Pell equations which are repdigits
    Carlos A. Gómez
    Florian Luca
    Faith Shadow Zottor
    Research in Number Theory, 2020, 6
  • [27] Pell numbers close to Fibonacci numbers
    Pomeo, Fabian
    Bravo, Jhon J.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [28] Pell numbers and Fibonacci polynomials
    Seiffert, H. -J.
    Bruckman, Paul S.
    FIBONACCI QUARTERLY, 2006, 44 (02): : 189 - 191
  • [29] ON ORESME NUMBERS AND THEIR CONNECTION WITH FIBONACCI AND PELL NUMBERS
    Goy, Taras
    Zatorsky, Roman
    FIBONACCI QUARTERLY, 2019, 57 (03): : 238 - 245
  • [30] On distance Pell numbers and their connections with Fibonacci numbers
    Szynal-Liana, Anetta
    Wloch, Iwona
    ARS COMBINATORIA, 2014, 113A : 65 - 75