On Y-coordinates of Pell equations which are Fibonacci numbers

被引:0
|
作者
Florian Luca
Faith S. Zottor
机构
[1] University of the Witwatersrand,School of Mathematics
[2] Centro de Ciencias Matemáticas UNAM,undefined
关键词
Diophantine equations; Lucas sequence; Pell equation; 11D61; 11B39; 11D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 2$$\end{document} be an integer which is not a square. We show that if (Fn)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_n)_{n\ge 0}$$\end{document} is the Fibonacci sequence and (Xm,Ym)m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_m, Y_m)_{m\ge 1}$$\end{document} is the mth solution of the Pell equation X2-dY2=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^2 -dY^2 = \pm 1$$\end{document}, then the equation Ym=Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_m = F_n$$\end{document} has at most two positive integer solutions (m, n) except for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} when it has three solutions (m,n)=(1,2),(2,3),(3,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,n)=(1,2),(2,3),(3,5)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] X-coordinates of Pell equations as sums of two tribonacci numbers
    Bravo, Eric F.
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    PERIODICA MATHEMATICA HUNGARICA, 2018, 77 (02) : 175 - 190
  • [32] Connections between Fibonacci and Pell numbers
    Merca, Mircea
    NOTE DI MATEMATICA, 2020, 40 (02): : 53 - 61
  • [33] FIBONACCI NUMBERS IN GENERALIZED PELL SEQUENCES
    Bravo, Jhon J.
    Herrera, Jose L.
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1057 - 1068
  • [34] X-coordinates of Pell equations as sums of two tribonacci numbers
    Eric F. Bravo
    Carlos Alexis Gómez Ruiz
    Florian Luca
    Periodica Mathematica Hungarica, 2018, 77 : 175 - 190
  • [35] On the x-coordinates of Pell equations that are sums of two Padovan numbers
    Mahadi Ddamulira
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [36] ON THE x-COORDINATES OF PELL EQUATIONS THAT ARE PRODUCTS OF TWO LUCAS NUMBERS
    Ddamulira, Mahadi
    FIBONACCI QUARTERLY, 2020, 58 (01): : 18 - 37
  • [37] On the x-coordinates of Pell equations that are sums of two Padovan numbers
    Ddamulira, Mahadi
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (01):
  • [38] Generalized Pell numbers and some relations with Fibonacci numbers
    Wloch, Andrzej
    Wolowiec-Musial, Malgorzata
    ARS COMBINATORIA, 2013, 109 : 391 - 403
  • [39] On generalized Pell numbers generated by Fibonacci and Lucas numbers
    Szynal-Liana, Anetta
    Wloch, Andrzej
    Wloch, Iwona
    ARS COMBINATORIA, 2014, 115 : 411 - 423
  • [40] On the x-coordinates of Pell equations which are rep-digits
    Dossavi-Yovo, Appolinaire
    Luca, Florian
    Togbe, Alain
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (3-4): : 381 - 399