On the connections between Pell numbers and Fibonacci p-numbers

被引:4
|
作者
Shannon, Anthony G. [1 ]
Erdag, Ozgur [2 ]
Deveci, Omur [2 ]
机构
[1] Univ New South Wales, Warrane Coll, Kensington, NSW, Australia
[2] Kafkas Univ, Fac Sci & Letters, Dept Math, TR-36100 Kars, Turkey
关键词
Pell sequence; Fibonacci p-sequence; Matrix; Representation; BINET FORMULAS; SUMS;
D O I
10.7546/nntdm.2021.27.1.148-160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define the Fibonacci-Pell p-sequence and then we discuss the connection of the Fibonacci-Pell p-sequence with the Pell and Fibonacci p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Fibonacci-Pell p-numbers by the aid of the n-th power of the generating matrix of the Fibonacci-Pell p-sequence. Furthermore, we derive relationships between the Fibonacci-Pell p-numbers and their permanent, determinant and sums of certain matrices.
引用
收藏
页码:148 / 160
页数:13
相关论文
共 50 条
  • [1] ON THE CONNECTIONS BETWEEN PADOVAN NUMBERS AND FIBONACCI p-NUMBERS
    Erdag, Ozgur
    Deveci, Omur
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (3A): : 507 - 521
  • [2] Connections between Fibonacci and Pell numbers
    Merca, Mircea
    NOTE DI MATEMATICA, 2020, 40 (02): : 53 - 61
  • [3] On distance Pell numbers and their connections with Fibonacci numbers
    Szynal-Liana, Anetta
    Wloch, Iwona
    ARS COMBINATORIA, 2014, 113A : 65 - 75
  • [4] A STUDY ON THE FIBONACCI p-NUMBERS
    Halici, Serpil
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 14 (M09): : 106 - 111
  • [5] Complex Fibonacci p-Numbers
    Tasci, Dursun
    Yalcin, Feyza
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2013, 4 (03): : 213 - 218
  • [6] Dual complex Fibonacci p-numbers
    Prasad, B.
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [7] Incomplete Fibonacci and Lucas p-numbers
    TasciA, Dursun
    Firengiz, Mirac Cetin
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1763 - 1770
  • [8] The complex-type Pell p-numbers
    Akuzum, Yesim
    Aydin, Huseyin
    Deveci, Omur
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (04) : 745 - 754
  • [9] The Binet formulas for the Pell and Pell-Lucas p-numbers
    Kocer, E. Gokcen
    Tuglu, Naim
    ARS COMBINATORIA, 2007, 85 : 3 - 17
  • [10] Matrix Manipulations for Properties of Pell p-Numbers and their Generalizations
    Erdag, Ozgur
    Deveci, Omur
    Shannon, Anthony G.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (03): : 89 - 102