On the connections between Pell numbers and Fibonacci p-numbers

被引:4
|
作者
Shannon, Anthony G. [1 ]
Erdag, Ozgur [2 ]
Deveci, Omur [2 ]
机构
[1] Univ New South Wales, Warrane Coll, Kensington, NSW, Australia
[2] Kafkas Univ, Fac Sci & Letters, Dept Math, TR-36100 Kars, Turkey
关键词
Pell sequence; Fibonacci p-sequence; Matrix; Representation; BINET FORMULAS; SUMS;
D O I
10.7546/nntdm.2021.27.1.148-160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define the Fibonacci-Pell p-sequence and then we discuss the connection of the Fibonacci-Pell p-sequence with the Pell and Fibonacci p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Fibonacci-Pell p-numbers by the aid of the n-th power of the generating matrix of the Fibonacci-Pell p-sequence. Furthermore, we derive relationships between the Fibonacci-Pell p-numbers and their permanent, determinant and sums of certain matrices.
引用
收藏
页码:148 / 160
页数:13
相关论文
共 50 条
  • [21] ON ORESME NUMBERS AND THEIR CONNECTION WITH FIBONACCI AND PELL NUMBERS
    Goy, Taras
    Zatorsky, Roman
    FIBONACCI QUARTERLY, 2019, 57 (03): : 238 - 245
  • [22] On the m-extension of the Fibonacci and Lucas p-numbers
    Kocer, E. Gokcen
    Tuglu, Naim
    Stakhov, Alexey
    CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 1890 - 1906
  • [23] Pell numbers and Fibonacci polynomials
    Seiffert, H. -J.
    Bruckman, Paul S.
    FIBONACCI QUARTERLY, 2006, 44 (02): : 189 - 191
  • [24] CODING THEORY ON THE (m, t)-EXTENSION OF THE FIBONACCI p-NUMBERS
    Basu, Manjusri
    Prasad, Bandhu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (02) : 259 - 267
  • [25] Generalized Pell numbers and some relations with Fibonacci numbers
    Wloch, Andrzej
    Wolowiec-Musial, Malgorzata
    ARS COMBINATORIA, 2013, 109 : 391 - 403
  • [26] FIBONACCI NUMBERS WHICH ARE PRODUCTS OF TWO PELL NUMBERS
    Ddamulira, Mahadi
    Luca, Florian
    Rakotomalala, Mihaja
    FIBONACCI QUARTERLY, 2016, 54 (01): : 11 - 18
  • [27] CODING THEORY ON h(x) FIBONACCI p-NUMBERS POLYNOMIALS
    Basu, Manjusri
    Prasad, Bandhu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
  • [28] On generalized Pell numbers generated by Fibonacci and Lucas numbers
    Szynal-Liana, Anetta
    Wloch, Andrzej
    Wloch, Iwona
    ARS COMBINATORIA, 2014, 115 : 411 - 423
  • [29] The Binet formula, sums and representations of generalized Fibonacci p-numbers
    Kilic, Emrah
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) : 701 - 711
  • [30] Coding theory on the m-extension of the Fibonacci p-numbers
    Basu, Manjusri
    Prasad, Bandhu
    CHAOS SOLITONS & FRACTALS, 2009, 42 (04) : 2522 - 2530