The Einstein metrics with smooth scri

被引:0
|
作者
J. Tafel
机构
[1] University of Warsaw,Institute of Theoretical Physics
来源
关键词
The Einstein metrics; Conformal compactification; The Bondi–Sachs coordinates;
D O I
暂无
中图分类号
学科分类号
摘要
We consider solutions of the Einstein equations with cosmological constant Λ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda \ne 0$$\end{document} admitting conformal compactification with smooth scri. Metrics are written in the Bondi–Sachs coordinates and expanded into inverse powers of the affine distance r. Unlike in the case Λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =0$$\end{document} all free data are located on the scri. They are constrained by linear differential equations for the Bondi mass and angular momentum aspects. Given free data components of metric are defined in a recursive way.
引用
收藏
相关论文
共 50 条