The Einstein metrics with smooth scri

被引:0
|
作者
J. Tafel
机构
[1] University of Warsaw,Institute of Theoretical Physics
来源
关键词
The Einstein metrics; Conformal compactification; The Bondi–Sachs coordinates;
D O I
暂无
中图分类号
学科分类号
摘要
We consider solutions of the Einstein equations with cosmological constant Λ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda \ne 0$$\end{document} admitting conformal compactification with smooth scri. Metrics are written in the Bondi–Sachs coordinates and expanded into inverse powers of the affine distance r. Unlike in the case Λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =0$$\end{document} all free data are located on the scri. They are constrained by linear differential equations for the Bondi mass and angular momentum aspects. Given free data components of metric are defined in a recursive way.
引用
收藏
相关论文
共 50 条
  • [21] Unstable Einstein metrics
    Böhm, C
    MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (02) : 279 - 286
  • [22] A class of Einstein (α, β)-metrics
    Xinyue Cheng
    Zhongmin Shen
    Yanfang Tian
    Israel Journal of Mathematics, 2012, 192 : 221 - 249
  • [23] On Einstein Matsumoto metrics
    Zhang, Xiaoling
    Shen, Yibing
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 15 - 30
  • [24] EINSTEIN-METRICS
    GAO, LZY
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 32 (01) : 155 - 183
  • [25] On Einstein Matsumoto metrics
    Zhang XiaoLing
    Xia QiaoLing
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1517 - 1524
  • [26] On Einstein Matsumoto metrics
    XiaoLing Zhang
    QiaoLing Xia
    Science China Mathematics, 2014, 57 : 1517 - 1524
  • [27] A class of Einstein (α, β)-metrics
    Cheng, Xinyue
    Shen, Zhongmin
    Tian, Yanfang
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (01) : 221 - 249
  • [28] On Einstein Finsler metrics
    Ulgen, Semail
    Sevim, Esra Sengelen
    Hacinliyan, Irma
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (09)
  • [29] Unstable Einstein metrics
    Christoph Böhm
    Mathematische Zeitschrift, 2005, 250 : 279 - 286
  • [30] On homogeneous Einstein (α,β)-metrics
    Yan, Zaili
    Deng, Shaoqiang
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 103 : 20 - 36