The Einstein metrics;
Conformal compactification;
The Bondi–Sachs coordinates;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider solutions of the Einstein equations with cosmological constant Λ≠0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda \ne 0$$\end{document} admitting conformal compactification with smooth scri. Metrics are written in the Bondi–Sachs coordinates and expanded into inverse powers of the affine distance r. Unlike in the case Λ=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda =0$$\end{document} all free data are located on the scri. They are constrained by linear differential equations for the Bondi mass and angular momentum aspects. Given free data components of metric are defined in a recursive way.
机构:
Cent South Univ Forestry & Technol, Inst Math & Phys, Changsha 410004, Hunan, Peoples R ChinaCent South Univ Forestry & Technol, Inst Math & Phys, Changsha 410004, Hunan, Peoples R China
Kang, Yifang
Chen, Zhiqi
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaCent South Univ Forestry & Technol, Inst Math & Phys, Changsha 410004, Hunan, Peoples R China
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Zhang, Hui
Yan, Zaili
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China