The Einstein metrics with smooth scri

被引:0
|
作者
J. Tafel
机构
[1] University of Warsaw,Institute of Theoretical Physics
来源
关键词
The Einstein metrics; Conformal compactification; The Bondi–Sachs coordinates;
D O I
暂无
中图分类号
学科分类号
摘要
We consider solutions of the Einstein equations with cosmological constant Λ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda \ne 0$$\end{document} admitting conformal compactification with smooth scri. Metrics are written in the Bondi–Sachs coordinates and expanded into inverse powers of the affine distance r. Unlike in the case Λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =0$$\end{document} all free data are located on the scri. They are constrained by linear differential equations for the Bondi mass and angular momentum aspects. Given free data components of metric are defined in a recursive way.
引用
收藏
相关论文
共 50 条
  • [31] On Einstein square metrics
    Shen, Zhongmin
    Yu, Changtao
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (3-4): : 413 - 424
  • [32] On Einstein Matsumoto metrics
    Rafie-Rad, M.
    Rezaei, B.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 882 - 886
  • [33] Einstein Landsberg metrics
    Sadeghzadeh, Nasrin
    Razavi, Asadollah
    Rezaei, Barman
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 75 (3-4): : 311 - 326
  • [34] On generalized Einstein metrics
    Labbi, Mohammed Larbi
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 69 - 77
  • [35] Einstein Riemannian metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Kang, Yifang
    Chen, Zhiqi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 107 : 86 - 91
  • [36] New pseudo Einstein metrics on Einstein solvmanifolds
    Hui Zhang
    Zaili Yan
    manuscripta mathematica, 2021, 166 : 427 - 436
  • [37] New pseudo Einstein metrics on Einstein solvmanifolds
    Zhang, Hui
    Yan, Zaili
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 427 - 436
  • [38] Kähler-Einstein metrics on smooth Fano toroidal symmetric varieties of type AIII
    Hong, Kyusik
    Hwang, DongSeon
    Park, Kyeong-Dong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024, 35 (07)
  • [39] Kahler-Einstein metrics for some quasi-smooth log del Pezzo surfaces
    Araujo, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) : 4303 - 4312
  • [40] Monopole classes and Einstein metrics
    Kotschick, D
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (12) : 593 - 609