The Einstein metrics;
Conformal compactification;
The Bondi–Sachs coordinates;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider solutions of the Einstein equations with cosmological constant Λ≠0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda \ne 0$$\end{document} admitting conformal compactification with smooth scri. Metrics are written in the Bondi–Sachs coordinates and expanded into inverse powers of the affine distance r. Unlike in the case Λ=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda =0$$\end{document} all free data are located on the scri. They are constrained by linear differential equations for the Bondi mass and angular momentum aspects. Given free data components of metric are defined in a recursive way.
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Cap, Andreas
Gover, A. Rod
论文数: 0引用数: 0
h-index: 0
机构:
Univ Auckland, Dept Math, Private Bag 92019, Auckland 1142, New Zealand
Australian Natl Univ, Inst Math Sci, GPO Box 4, Canberra, ACT 0200, AustraliaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Gover, A. Rod
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
2016,
717
: 47
-
75