ON EINSTEIN (α,β)-METRICS

被引:0
|
作者
Rezaei, B. [1 ]
Razavi, A. [1 ]
Sadeghzadeh, N. [1 ]
机构
[1] Amir Kabir Univ, Dept Math & Comp Sci, Tehran, Iran
关键词
Einstein Finsler metrics; (alpha; beta)-metrics; Schur lemma;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we consider some (alpha,beta) -metrics such as generalized Kropina, Matsumoto and F=(alpha+beta)(2)/alpha metrics, and obtain necessary and sufficient conditions for them to be Einstein metrics when beta is a constant Killing form. Then we prove with this assumption that the mentioned Einstein metrics must be Riemannian or Ricci flat.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 50 条
  • [1] Kahler-Einstein metrics on orbifolds and Einstein metrics on spheres
    Ghigi, Alessandro
    Kollar, Janos
    COMMENTARII MATHEMATICI HELVETICI, 2007, 82 (04) : 877 - 902
  • [2] Einstein metrics and Einstein-Randers metrics on a class of homogeneous manifolds
    Chen, Chao
    Chen, Zhiqi
    Hu, Yuwang
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [3] On Einstein Matsumoto metrics
    ZHANG XiaoLing
    XIA QiaoLing
    Science China(Mathematics), 2014, 57 (07) : 1517 - 1524
  • [4] Einstein metrics on spheres
    Boyer, CP
    Galicki, K
    Kollár, J
    ANNALS OF MATHEMATICS, 2005, 162 (01) : 557 - 580
  • [5] Unstable Einstein metrics
    Böhm, C
    MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (02) : 279 - 286
  • [6] A class of Einstein (α, β)-metrics
    Xinyue Cheng
    Zhongmin Shen
    Yanfang Tian
    Israel Journal of Mathematics, 2012, 192 : 221 - 249
  • [7] On Einstein Matsumoto metrics
    Zhang, Xiaoling
    Shen, Yibing
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 15 - 30
  • [8] EINSTEIN-METRICS
    GAO, LZY
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 32 (01) : 155 - 183
  • [9] On Einstein Matsumoto metrics
    Zhang XiaoLing
    Xia QiaoLing
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1517 - 1524
  • [10] On Einstein Matsumoto metrics
    XiaoLing Zhang
    QiaoLing Xia
    Science China Mathematics, 2014, 57 : 1517 - 1524