Polluted bootstrap percolation with threshold two in all dimensions

被引:0
|
作者
Janko Gravner
Alexander E. Holroyd
机构
[1] University of California,Mathematics Department
[2] University of Washington,undefined
来源
关键词
Bootstrap percolation; Cellular automaton; Critical scaling; 60K35; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document} of dimension d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} with threshold r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}, we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result partially resolves a conjecture of Morris, and contrasts with the d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} case, where Gravner and McDonald proved that the critical parameter is q/p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q/{p^2}$$\end{document}.
引用
收藏
页码:467 / 486
页数:19
相关论文
共 50 条
  • [21] A Sharp Threshold for a Modified Bootstrap Percolation with Recovery
    Tom Coker
    Karen Gunderson
    Journal of Statistical Physics, 2014, 157 : 531 - 570
  • [22] The threshold regime of finite volume bootstrap percolation
    Cerf, R
    Manzo, F
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 101 (01) : 69 - 82
  • [23] A sharp threshold for bootstrap percolation in a random hypergraph
    Morrison, Natasha
    Noel, Jonathan A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [24] A Sharp Threshold for a Modified Bootstrap Percolation with Recovery
    Coker, Tom
    Gunderson, Karen
    JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (03) : 531 - 570
  • [25] Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions
    van Enter, Aernout C. D.
    Fey, Anne
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (01) : 97 - 112
  • [26] Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions
    Aernout C. D. van Enter
    Anne Fey
    Journal of Statistical Physics, 2012, 147 : 97 - 112
  • [27] SHARP METASTABILITY THRESHOLD FOR AN ANISOTROPIC BOOTSTRAP PERCOLATION MODEL
    Duminil-Copin, H.
    Van Enter, A. C. D.
    ANNALS OF PROBABILITY, 2013, 41 (3A): : 1218 - 1242
  • [28] Threshold value of three-dimensional bootstrap percolation
    Kurtsiefer, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (04): : 529 - 536
  • [29] MAXIMUM PERCOLATION TIME IN TWO-DIMENSIONAL BOOTSTRAP PERCOLATION
    Benevides, Fabricio
    Przykucki, Michal
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 224 - 251
  • [30] Sharp metastability transition for two-dimensional bootstrap percolation with symmetric isotropic threshold rules
    Duminil-Copin, Hugo
    Hartarsky, Ivailo
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 190 (1-2) : 445 - 483