Sharp metastability transition for two-dimensional bootstrap percolation with symmetric isotropic threshold rules

被引:0
|
作者
Duminil-Copin, Hugo [1 ,2 ]
Hartarsky, Ivailo [3 ]
机构
[1] Univ Geneva, Sect Math, 2-4 Rue Lievre, CH-1211 Geneva, Switzerland
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] TU Wien, Fac Math & Geoinformat, Inst Stat & Math Methods Econ, Res Unit Probabil, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
Bootstrap percolation; Sharp threshold; Metastability;
D O I
10.1007/s00440-024-01310-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study two-dimensional critical bootstrap percolation models. We establish that a class of these models including all isotropic threshold rules with a convex symmetric neighbourhood, undergoes a sharp metastability transition. This extends previous instances proved for several specific rules. The paper supersedes a draft by Alexander Holroyd and the first author from 2012. While it served a role in the subsequent development of bootstrap percolation universality, we have chosen to adopt a more contemporary viewpoint in its present form.
引用
收藏
页码:445 / 483
页数:39
相关论文
共 50 条
  • [1] Sharp metastability threshold for two-dimensional bootstrap percolation
    Holroyd, AE
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (02) : 195 - 224
  • [2] Sharp metastability threshold for two-dimensional bootstrap percolation
    Alexander E. Holroyd
    Probability Theory and Related Fields, 2003, 125 : 195 - 224
  • [3] SHARP METASTABILITY THRESHOLD FOR AN ANISOTROPIC BOOTSTRAP PERCOLATION MODEL
    Duminil-Copin, H.
    Van Enter, A. C. D.
    ANNALS OF PROBABILITY, 2013, 41 (3A): : 1218 - 1242
  • [4] Sharp threshold for two-dimensional majority dynamics percolation
    Alves, Caio
    Baldasso, Rangel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 1869 - 1886
  • [5] MAXIMUM PERCOLATION TIME IN TWO-DIMENSIONAL BOOTSTRAP PERCOLATION
    Benevides, Fabricio
    Przykucki, Michal
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 224 - 251
  • [6] SHARP METASTABILITY THRESHOLD FOR AN ANISOTROPIC BOOTSTRAP PERCOLATION MODEL (vol 41, pg 1218, 2013)
    Duminil-Copin, Hugo
    van Enter, Aernout
    ANNALS OF PROBABILITY, 2016, 44 (02): : 1599 - 1599
  • [7] The metastability threshold for modified bootstrap percolation in d dimensions
    Holroyd, Alexander E.
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 418 - 433
  • [8] A Sharp Threshold for a Modified Bootstrap Percolation with Recovery
    Tom Coker
    Karen Gunderson
    Journal of Statistical Physics, 2014, 157 : 531 - 570
  • [9] A sharp threshold for bootstrap percolation in a random hypergraph
    Morrison, Natasha
    Noel, Jonathan A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [10] THE SHARP THRESHOLD FOR BOOTSTRAP PERCOLATION IN ALL DIMENSIONS
    Balogh, Jozsef
    Bollobas, Bela
    Duminil-Copin, Hugo
    Morris, Robert
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2667 - 2701