Polluted bootstrap percolation with threshold two in all dimensions

被引:0
|
作者
Janko Gravner
Alexander E. Holroyd
机构
[1] University of California,Mathematics Department
[2] University of Washington,undefined
来源
关键词
Bootstrap percolation; Cellular automaton; Critical scaling; 60K35; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document} of dimension d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} with threshold r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}, we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result partially resolves a conjecture of Morris, and contrasts with the d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} case, where Gravner and McDonald proved that the critical parameter is q/p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q/{p^2}$$\end{document}.
引用
收藏
页码:467 / 486
页数:19
相关论文
共 50 条
  • [31] SITE PERCOLATION THRESHOLDS IN ALL DIMENSIONS
    GALAM, S
    MAUGER, A
    PHYSICA A, 1994, 205 (04): : 502 - 510
  • [32] Directed rigidity and bootstrap percolation in 1+1 dimensions
    de Menezes, MA
    Moukarzel, CF
    PHYSICAL REVIEW E, 1999, 60 (05): : 5699 - 5705
  • [33] Frozen percolation in two dimensions
    Demeter Kiss
    Probability Theory and Related Fields, 2015, 163 : 713 - 768
  • [34] Dependent percolation in two dimensions
    Balister, PN
    Bollobás, B
    Stacey, AM
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (04) : 495 - 513
  • [35] Frozen percolation in two dimensions
    Kiss, Demeter
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 163 (3-4) : 713 - 768
  • [36] Agglomerative percolation in two dimensions
    Christensen, C.
    Bizhani, G.
    Son, S. -W.
    Paczuski, M.
    Grassberger, P.
    EPL, 2012, 97 (01)
  • [37] Constrained percolation in two dimensions
    Holroyd, Alexander E.
    Li, Zhongyang
    ANNALES DE L INSTITUT HENRI POINCARE D, 2021, 8 (03): : 323 - 375
  • [38] Percolation transitions in two dimensions
    Feng, Xiaomei
    Deng, Youjin
    Blote, Henk W. J.
    PHYSICAL REVIEW E, 2008, 78 (03):
  • [39] Dependent percolation in two dimensions
    P.N. Balister
    B. Bollobás
    A.M. Stacey
    Probability Theory and Related Fields, 2000, 117 : 495 - 513
  • [40] The time of bootstrap percolation with dense initial sets for all thresholds
    Bollobas, Bela
    Smith, Paul
    Uzzell, Andrew J.
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (01) : 1 - 29