Polluted bootstrap percolation with threshold two in all dimensions

被引:0
|
作者
Janko Gravner
Alexander E. Holroyd
机构
[1] University of California,Mathematics Department
[2] University of Washington,undefined
来源
关键词
Bootstrap percolation; Cellular automaton; Critical scaling; 60K35; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^d$$\end{document} of dimension d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} with threshold r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document}, we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result partially resolves a conjecture of Morris, and contrasts with the d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} case, where Gravner and McDonald proved that the critical parameter is q/p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q/{p^2}$$\end{document}.
引用
收藏
页码:467 / 486
页数:19
相关论文
共 50 条
  • [41] BOOTSTRAP PERCOLATION
    ADLER, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 171 (03) : 453 - 470
  • [42] SCALING AT THE PERCOLATION-THRESHOLD ABOVE 6 DIMENSIONS
    AHARONY, A
    GEFEN, Y
    KAPITULNIK, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (04): : L197 - L202
  • [43] Dynamic monopolies in two-way bootstrap percolation
    Jeger, Clemens
    Zehmakan, Ahad N.
    DISCRETE APPLIED MATHEMATICS, 2019, 262 : 116 - 126
  • [44] Generic rigidity percolation in two dimensions
    Jacobs, DJ
    Thorpe, MF
    PHYSICAL REVIEW E, 1996, 53 (04): : 3682 - 3693
  • [45] Properties of Granular Percolation in Two Dimensions
    Journal of the Physical Society of Japan, 66 (11):
  • [46] UNIVERSALITY FOR BOND PERCOLATION IN TWO DIMENSIONS
    Grimmett, Geoffrey R.
    Manolescu, Joan
    ANNALS OF PROBABILITY, 2013, 41 (05): : 3261 - 3283
  • [47] Continuum Percolation Thresholds in Two Dimensions
    Mertens, Stephan
    Moore, Cristopher
    PHYSICAL REVIEW E, 2012, 86 (06)
  • [48] Properties of granular percolation in two dimensions
    Toyofuku, S
    Odagaki, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (11) : 3512 - 3516
  • [49] RELATIONS BETWEEN INVASION PERCOLATION AND CRITICAL PERCOLATION IN TWO DIMENSIONS
    Damron, Michael
    Sapozhnikov, Artem
    Vagvoelgyi, Balint
    ANNALS OF PROBABILITY, 2009, 37 (06): : 2297 - 2331
  • [50] Strong-majority bootstrap percolation on regular graphs with low dissemination threshold
    Mitsche, Dieter
    Perez-Gimenez, Xavier
    Pralat, Pawel
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (09) : 3110 - 3134