Star-structure connectivity of folded hypercubes and augmented cubes

被引:0
|
作者
Lina Ba
Hailun Wu
Heping Zhang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
关键词
Interconnection network; Structure connectivity; Star; Folded hypercube; Augmented cube;
D O I
暂无
中图分类号
学科分类号
摘要
The connectivity is an important parameter to evaluate the fault-tolerance of a network. As a generalization, structure connectivity and substructure connectivity of graphs were proposed. For connected graphs G and H, the H-structure connectivity κ(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G;\; H)$$\end{document} (resp. H-substructure connectivity κs(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^{s}(G;\; H)$$\end{document}) of G is the minimum cardinality of a set of subgraphs F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of G that each is isomorphic to H (resp. a connected subgraph of H) so that G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G- \mathcal {F}$$\end{document} is disconnected or the singleton. In this paper, we compute the star (K1,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,m}$$\end{document})-structure connectivity of n-dimensional folded hypercubes FQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FQ_{n}$$\end{document} and augmented cubes AQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AQ_{n}$$\end{document}, which are popular variants of n-dimensional hypercubes Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document} as attractive interconnection network prototypes for multiple processor systems. By a large component approach, we obtain that κ(FQn;K1,m)=κs(FQn;K1,m)=⌈n+12⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (FQ_{n};\;K_{1,m})=\kappa ^{s}(FQ_{n};\;K_{1,m})=\lceil \frac{n+1}{2}\rceil$$\end{document} for 2⩽m⩽n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\leqslant m\leqslant n-1$$\end{document}, n⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 7$$\end{document} and κ(AQn;K1,m)=κs(AQn;K1,m)=⌈n-12⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (AQ_{n};\;K_{1,m})=\kappa ^{s}(AQ_{n};\;K_{1,m})=\lceil \frac{n-1}{2}\rceil$$\end{document} for 4⩽m⩽3n-154\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\leqslant m\leqslant \frac{3n-15}{4}$$\end{document}, which much improve some known results with very restricted m.
引用
收藏
页码:3257 / 3276
页数:19
相关论文
共 50 条
  • [1] Star-structure connectivity of folded hypercubes and augmented cubes
    Ba, Lina
    Wu, Hailun
    Zhang, Heping
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (03): : 3257 - 3276
  • [2] Correction to: Star-structure connectivity of folded hypercubes and augmented cubes
    Lina Ba
    Hailun Wu
    Heping Zhang
    The Journal of Supercomputing, 2023, 79 : 5828 - 5828
  • [3] The Star-Structure Connectivity and Star-Substructure Connectivity of Hypercubes and Folded Hypercubes
    Ba, Lina
    Zhang, Heping
    COMPUTER JOURNAL, 2022, 65 (12): : 3156 - 3166
  • [4] Star-structure connectivity of folded hypercubes and augmented cubes (Sept, 10.1007/s11227-022-04758-z, 2022)
    Ba, Lina
    Wu, Hailun
    Zhang, Heping
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (05): : 5828 - 5828
  • [5] Structure connectivity of folded cross cubes
    Ba, Lina
    Zhang, Heping
    COMPUTER JOURNAL, 2024,
  • [6] On Restricted Connectivity and Extra Connectivity of Hypercubes and Folded Hypercubes
    徐俊明
    朱强
    侯新民
    周涛
    Journal of Shanghai Jiaotong University, 2005, (02) : 203 - 207
  • [7] Conditional connectivity of folded hypercubes
    Zhao, Shuli
    Yang, Weihua
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 388 - 392
  • [8] The spanning connectivity of folded hypercubes
    Ma, Meijie
    INFORMATION SCIENCES, 2010, 180 (17) : 3373 - 3379
  • [9] Restricted Arc Connectivity of Unidirectional Hypercubes and Unidirectional Folded Hypercubes
    Lin, Shang-wei
    Fan, Na-qi
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (03): : 529 - 543
  • [10] Structure connectivity of folded crossed cubes based on faulty stars
    Guo, Huimei
    Hao, Rong-Xia
    Mamut, Aygul
    Chang, Jou-Ming
    Wu, Jie
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,